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ABSTRACT

In this dissertation, we discuss control and estimation problems for systems

that operate with data-rate constraints. We start by studying the estimation

entropy of switched linear systems. This quantity is the minimal data-rate we

need to use to estimate the state of a switched linear system with an estima-

tion error that decays with a prescribed exponential decay rate. We provide

upper and lower bounds for the estimation entropy in terms of the Lyapunov

exponents of the switched system. Also, we show that those bounds coincide

with the entropy when the system is Lyapunov regular. We provide a cod-

ing scheme that solves the state reconstruction problem with the data rate

as close as desired to the minimum. Under the regularity assumption, we

show how to make that algorithm work causally. Next, we present sufficient

conditions for a system to be Lyapunov regular and show that Markov Jump

Linear Systems belong to that class. We also illustrate those theoretical re-

sults with simulations. Then, we switch subjects to the problem of defining

controllability for linear time-varying systems with a finite data-rate. We

explain why the usual notion of controllability is unfit when data-rate con-

straints are present. Then, we define a new controllability notion that makes

sense in this scenario. We also justify why such a notion is natural. Next, we

present a necessary condition and a sufficient condition for a system to be

controllable with a finite data-rate. Finally, we revisit the topic of controlla-

bility with a finite data-rate, but we specialize our analysis to switched linear

systems. Although this part of the work is more restrictive than the previous

one, we show how the switched system structure allows us to derive sufficient

conditions for our system to be controllable with a finite data-rate using in-

formation about the individual modes and some mild assumptions about the

switching signal. In particular, when our switching signal satisfies an average

dwell-time condition, we give a simple relation between the sampling time,

chatter bound, and average-dwell time that guarantees that our system will
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be controllable with a finite data-rate. Then, we generalize our analysis by

assuming we can have packet losses in our communication channel. We prove

a sufficient condition for such a system to be controllable with a finite data-

rate even when we might lose packets. We demonstrate this condition by

constructing an algorithm, which makes this proof constructive.
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CHAPTER 1

INTRODUCTION

Control and communication theories have long histories. It is customary

to trace the former field’s beginning to Maxwell’s paper [1], where he ana-

lyzed the stability of Watt’s governor. For the latter, the seminal paper of

Shannon [2] on the mathematical theory of communication formalized what

would later be called information theory. It is less usual, however, to point

out when these two subjects first appeared together. A good candidate for

that first overlap is the seminal book by Norbert Wiener [3]. In that work,

Wiener coined the term Cybernetics and started the homologous field of

study. More relevant to our discussion is that that work is the starting point

of the theory of control over communication channels. We see in the book [3]

the connection between the transmission of information and the feedback

loop. However, he only considered analog channels in that work. Since the

transistor was just a proof of concept when Wiener wrote the reference [3],

we can conjecture that that is why he neglected digital communication chan-

nels. Nowadays, however, digital communication is ubiquitous in most ap-

plications. As usual, new technologies bring unexplored technical challenges

and theoretical problems.

To understand the new challenges that including a digital communication

channel brings into the controller design, we need to take a step back and

understand the concept of data-rate. In classical control, we have sensors

that transmit perfect information to the controller. However, when this

communication happens over a digital channel, we can only send packets

of symbols from the transmitter to the receiver. Thus, we need to convert

our measurement from the analog world into the digital one. We perform this

latter part using a coding scheme, i.e., a coder and decoder pair. The purpose

of the coder is to translate measurements from the analog world into the

digital by encoding them as symbols before transmission. Once those symbols

reach the receiver, the decoder converts them into measurement estimates.
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Informally, the data-rate is the ratio between the packet’s size, defined as the

number of symbols it can contain, to the time elapsed to transmit it. It is well-

known that a digital channel can only reliably communicate information if the

data-rate is finite [2]. In the early days of control over digital communication

channels, it was common to model the effect of that quantization error as

an additive noise [4, 5] and use tools from probability theory to perform the

analysis. Because of that, it was usual to treat both coding schemes and

control designs separately, and this approximation gives satisfactory results

for many systems.

The discovery of the Data Rate Theorem [5–8] changed that reality. This

theorem proves the existence of a minimal data-rate below which we cannot

control the plant. Moreover, we might need to design the controller and

coding scheme together to control the plant when the system and the digital

communication channel pose severe constraints. For instance, that theorem

shows that, for unstable linear time-invariant systems, we need a positive

minimal data-rate for stabilizing controllers to exist. Intuitively, this happens

because we lose information about our measurement when we perform the

quantization. When the quantization is too coarse, the value reconstructed

at the decoder side might be too far from the original value. Over time, this

error increases, and it will instabilize the plant. This latter comment shows

that the usual approach we mentioned in the last paragraph, i.e., modeling

the quantization error as additive noise and designing the controller, does

not work when the data-rate is severely constrained. With this discussion,

we make a case for studying what new constraints appear when our control

or estimation tasks restrict us to work with a finite data-rate.

The reader who is used to lumped control systems might be asking what

types of applications require the introduction of communication channels be-

tween the sensors and the controller. We notice that many practical control

systems today have components distributed over space. Thus, performing

a task that involves the joint operation of the system parts’, such as syn-

chronization, requires digital communication between its components. This

latter remark justifies the claim: understanding what new constraints arise

when the data-rate is limited is fundamental. We start by trying to find

results similar to the Data Rate Theorem that works for other control and

estimation tasks.

It is clear that the concept behind the Data Rate Theorem is that of
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entropy [9]. Entropy, loosely speaking, is the rate at which the system gen-

erates uncertainty. More precisely, it captures the rate at which two nearby

trajectories of a dynamical system diverge from each other. The intuition

behind why that concept is relevant becomes clear when we think of the

system’s behavior in the interval between the arrival of two consecutive data

packages. In this interval, the control system behaves as an open-loop con-

trolled system, and the feedback only happens when we receive an update.

Therefore, it sounds natural to define and compute the entropy. We note,

however, that the entropy notion we are interested in might be distinct for

each specific control or estimation task. Because of that, several authors

defined different entropies for distinct control and estimation tasks [9–13].

In the present work, we will focus on the estimation entropy [13]. The esti-

mation entropy is related to the problem of reconstructing the state with a

prescribed exponentially decreasing error bound with minimal data rate.

The first main goal of this document is to understand how we can com-

pute the estimation entropy of switched linear systems and how to design a

quantizer that operates with a data-rate close to the minimum possible. We

start this part of the document by asking how to compute the estimation

entropy of a switched linear system. More explicitly, we provide upper and

lower bounds for the estimation entropy using the Lyapunov exponents of

a Switched Linear System and prove that those bounds coincide for a large

class of systems called Lyapunov regular. This so-called “regularity” prop-

erty allows us to devise a causal algorithm that reconstructs the state with

a data rate as close as desired to the estimation entropy. Next, we provide

sufficient conditions for a Switched Linear System to be regular. In partic-

ular, we show that many Markov Jump Linear Systems [14] satisfy those

conditions.

Our second goal is to study what new constraints arise when we try to

control linear time-varying systems with a finite data-rate. We argue that

the usual notion of controllability for linear time-varying systems is unsuit-

able when the controller data-rate must be finite. Then, we introduce a

new controllability concept that captures some of the properties of the usual

controllability notion, which justifies calling it controllability with a finite

data-rate. After that, we try to characterize that new controllability notion

by giving a necessary condition and a suffcient condition for our system to

be controllable with a finite data-rate. We prove the sufficient part by giv-
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ing a constructive algorithm, which we can use to design controllers for such

systems.

Our third and final goal is to study sufficient conditions for switched lin-

ear systems to be controllable with a finite data-rate. First, we specialize

our previous sufficient condition for general linear time-varying systems to

the case where our system is a switched one. By restricting our attention

to this class of systems, we can derive much simpler sufficient conditions for

controllability with a finite data-rate than the one we get for general linear

time-varying systems. We take advantage of the switched system structure

to derive conditions that only depend on the controllable subspaces of the

individual modes and some mild properties of the switching signal. In partic-

ular, when the switching signal satisfies an average dwell-time condition, we

get a straightforward relation between the sampling time, the chatter bound,

and the average dwell-time. Next, we consider the possibility of packet losses,

i.e., our communication between the sensor and controller might be faulty.

We give a sufficient condition for such a system to be controllable with a

finite data-rate. We prove this latter fact by providing a controller design

technique.

The present document is organized as follows: in Chapter 2, we show our

work on the estimation entropy of switched linear systems. We formalize

all the concepts related to Oseledets’ filtrations, Lyapunov exponents, and

estimation entropy. Also, we provide proof for the upper and lower bounds

for the estimation entropy and show that they are the same when regularity

holds. Next, we present a coding scheme that operates with a data rate as

close as desired to the minimum value with a suitable choice of parameters.

After that, we show how to estimate those parameters online to make the

scheme causal. Finally, we give sufficient conditions for regularity and prove

that Markov Jump Linear Systems satisfy those with probability 1. In Chap-

ter 3, we argue that we need to introduce a new controllability notion for

systems that operate with a finite data-rate. We explain why that is the

case and introduce a new controllability notion, which we justify why this

extends the usual controllability notion to this case. Then, we prove a nec-

essary condition and a sufficient condition for the system to be controllable

with a finite data-rate. In Chapter 4, we address the same problem as in

Chapter 3, but we focus on the case of switched linear systems. We start by

motivating the study of such a problem again and give examples. Then, we

4



derive sufficient conditions for a switched system to be controllable with a

finite data-rate that only uses information about the individual modes and

some mild conditions on the switching signal. In particular, we use one of

those conditions to prove a simple condition for a system that satisfies an

average dwell-time condition to be controllable with a finite data-rate. Next,

we address the problem of controlling a switched system when packet losses

occur. We give another sufficient condition for controllability for this case

and prove it constructively by giving a controller design technique. Finally,

in Chapter 5, we present some interesting future research directions.
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CHAPTER 2

ESTIMATION ENTROPY, LYAPUNOV
EXPONENTS, AND QUANTIZER DESIGN

FOR SWITCHED LINEAR SYSTEMS

In this overview, we motivate the study of state estimation with finite data-

rate. We start by noticing that many systems we find in practice require

spatially distributed sensors, controllers, and actuators to operate. For these

systems to function normally, their components must share data. Thus,

we need communication channels to transmit information between the con-

stituent pieces of our system. These channels, in their turn, constrain the

data-rate we can use to send data from the source to its target. Consequently,

this raises the question: what is the minimum data-rate for our system to

work satisfactorily?

The answer to this question varies with the nature of the problem we want

to solve. Nonetheless, the solution is often related to some entropy notion.

Informally, our problem-associated entropy notion is the rate at which a sys-

tem generates information related to the studied problem. This relationship

between entropy and data-rate led many authors to propose distinct entropy

notions for each task (see, e.g., [9, 11, 12, 15–17]). In this chapter, we study

the minimum data rate to estimate the state of switched linear systems with

a prescribed exponential decay rate of α ≥ 0 for the estimation error. This

problem naturally guides us to the entropy concept called estimation en-

tropy. Liberzon introduced this idea to solve state estimation problems for

autonomous nonlinear systems in the work [18]. In some sense, we can under-

stand estimation entropy as a rate at which the system generates uncertainty

about the state. The estimation entropy value gives us the minimum data-

rate associated with our problem. However, that is only part of the problem.

To completely solve our task, we need to design a coder-estimator scheme. In

this chapter, we address this issue. We construct a coding-estimator scheme

that operates with an average data-rate arbitrarily close to the estimation

entropy for switched linear systems. Another goal of this chapter is to show a

relationship between the estimation entropy of a switched linear system and
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its Lyapunov exponents. It is worth mentioning that we previously showed

the connection between those two results in the papers [19] and [20]. Nev-

ertheless, we present a different proof of that fact, which makes it easier to

see an interesting relationship between the Lyapunov exponents, geometric

objects called filtrations (that play a role similar to eigenspaces in the linear

time-invariant case), and the quantizer design.

We take this opportunity to give a brief overview of the literature on en-

tropy notions for switched systems. We hope this contextualization will help

the reader understand the present work’s contributions. The first documents

to explicitly present an entropy notion for switched systems, related to the es-

timation entropy defined in the article [18], were [21], [22], [23], [24], and [25].

Now, we explain the contribution of each one of those works to the current

theory. The article [22] studied a nonstandard modification of the estimation

entropy adapted to the analysis of switched nonlinear systems with unknown

switching signals satisfying a minimum dwell-time restriction. The paper [23]

extended those results by considering systems with inputs. The work [24]

studied the topological entropy of switched linear systems, which equals the

estimation entropy of [18] when α = 0, by presenting upper and lower bounds

under some structural assumptions on the modes. The papers [25] and [26]

improved the bounds presented in [24]. All bounds we mentioned relied on

individual modes and their active rates, and the authors did not use any

other features of the switching signal. The authors of [25] concluded that we

could not improve those bounds without further knowledge of the switching

signal structure. After that, we presented tighter bounds for the class of

regular switched systems in [19]. The tightness of these bounds relies on the

knowledge of the entire switching signal. Another interesting aspect of [19] is

that the upper bound provided for the estimation entropy of switched linear

systems is related to the Lyapunov exponents. We mention that in [27], the

authors obtained the same minimum average data-rate as in [19], with α = 0,

but for the mean square stabilization problem of scalar Markov Jump Linear

Systems. We note that the relation between Lyapunov exponents and the

entropy appears in several places in the dynamical systems literature, often

under the name Pesin entropy formula [28–30], as well as in the invariance

entropy formula for partially hyperbolic control systems [31], and in a lower

bound for the estimation entropy of a class of differential dynamics on com-

pact manifolds [32]. We remark that to obtain those relations, we need to
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assume differentiability of the flow and compactness of the state space, which

is different from the technique used in [19], [20], and in the present work.

In more recent years, the work [33] provided a computation method for the

maximum topological entropy over all possible switching signals. Further,

those same authors showed in [34] that the topological entropy of a linear

time-varying system equals the minimum average data-rate for the state ob-

servation with bounded estimation error. Finally, the reference [35] provided

an algorithm stabilizing switched linear systems with an average data-rate

arbitrarily close to the minimum. It is worth remarking that, although seem-

ingly different, the minimum data-rate for stabilization obtained in [35], in

terms of the Lyapunov exponent of exterior products, has the same value as

the estimation entropy lower bound obtained in [19] utilizing the usual Lya-

punov exponents of linear systems, with α = 0 (see, e.g., Chapter 6 of [36]).

Nevertheless, for the algorithm described in [35] to work, we must provide an

upper bound for the topological entropy at the start of the operation, which

might not be a realistic assumption, as discussed in [20].

In this chapter, we present the works published in [19], [37], and [20].

Here, we connect Lyapunov exponents and estimation entropy. Also, we give

a constructive algorithm that builds a state estimate for a switched linear

system with a prescribed exponential decay rate α ≥ 0 for the estimation

error with an average data-rate as close as desired to the estimation entropy.

Interestingly, assuming that our system is regular, we can make the previous

algorithm causal. We naturally ask if regularity is a mild assumption, which

we answer affirmatively by showing that many practical systems fall into that

category. For example, with probability one, the realizations of Markov Jump

Linear Systems are regular. We also describe how to use regularity to make

our quantization algorithm work causally. Remarkably, we can ensure the

exponential decay of the error without knowing the entire switching signal,

as required in [35].

This chapter has the following structure: in Section 2.1, we describe the

problem we want to study. Also, we present a motivating example that we

revisit throughout the chapter. In Section 2.2, we examine the notions of

Lyapunov exponents, Oseledets’ filtration, and estimation entropy. In our

analysis of the estimation entropy of switched linear systems, we provide an

upper bound for it and show that, under the assumption of Lyapunov reg-

ularity, that upper bound becomes equality. We introduce our quantization
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algorithm in Section 2.3. Then, we use the concepts presented in the previous

section to show that this algorithm can operate with an average data-rate

close to the estimation entropy. After that, in Section 2.4, we show that

the Lyapunov regularity condition is natural for many systems. Finally, in

Section 2.5, we conclude the contents of this chapter. It is worth remarking

that one can find the contents of this chapter presented in a slightly different

form in the works [19], [37], and [20].

Chapter notations : We denote by || · ||P the norm in Rd induced by the inner

product ⟨x, y⟩P = x⊤Py, with P positive definite. We denote by || · || the
infinity-norm in a finite dimensional vector space. Let R = (−∞,∞), let

Z≥0 = {0, 1, . . . } the nonnegative integers, and let N = {1, 2, . . . } the set

of natural numbers. We denote by [m] := {1, . . . ,m} for any m ∈ N. For

a real number x, we denote by ⌈x⌉ the smallest integer number y such that

x ≤ y. For any set E, we denote by #E its cardinality. For subsets of Rd

we denote vol(E) the volume of the set (its Lebesgue measure). Further, we

denote by diam(E), where E ⊂ Rd the set’s diameter according to the metric

induced by the norm || · ||. We also denote by dim(V ) the dimension of a

linear vector space V . Also, for any x > 0, log x is the logarithm with base e.

Furthermore, we define by B(x, r) with x ∈ Rd and r > 0 the infinity-norm

ball (hypercube) with center x and radius r.

We denote by M(d,R) the set of all d × d matrices over the reals, and

we denote by GL(R, d) the set of all d× d invertible matrices over the reals.

We denote det(A) and tr(A) the determinant and the trace of the matrix A,

respectively. Further, Id ∈ M(d,R) is the identity matrix.

Additionally, consider the parallelepiped defined by {κivi : κi ∈ [0, 1]}, where
{vi}ki=1 ⊂ Rd is a linearly independent set of vectors. We denote the k-th

volume of the parallelepiped by vol ({v1, · · · , vk}) and its numerical value is

given by
√

det (V ⊤V ), where V is the d× k matrix with columns vi.
1

2.1 Preliminaries

In the chapter, we consider the following model

ẋ(t) = Aσ(t)x(t), (2.1)

1Notice that interchanging the order of the columns does not change the k-th volume.
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where x(t) ∈ Rd, σ : R≥0 → Σ is a switching signal and Σ is a finite cardinality

set, andAσ(t) ∈ M(d,R). We denote by Φ(t, t0) the state-transition matrix of

(2.1), i.e. the solution of the ODE d
dt
Φ(t, t0) = Aσ(t)Φ(t, t0) with Φ(t0, t0) = Id

and t0 being the initial time. Furthermore, we will make the assumption that

σ is constant on intervals of the type [ti, ti+1) for i ∈ Z≥0, where (ti)i∈Z≥0
is a

strictly increasing sequence of positive times such that limi→∞ ti = ∞. The

elements of the sequence (ti)i∈N are called switching times. We also need to

define an increasing sequence of sampling times (τk)k∈Z≥0
, with τk = kTp for

all k ∈ Z≥0 and some Tp > 0.

Then, we can rewrite the model described in equation (2.1) using its exact

discrete-time model, defined by:

xk+1 = Ãkxk, (2.2)

where (xk)k∈Z≥0
is the state at the sampling times τk, i.e. xk = x(τk) for

k ∈ Z≥0, and Ãk := Φ(τk+1, τk) for k ∈ Z≥0.

Consider the following definitions of coder-estimator scheme (see, e.g.,

[9,15]). Let {τk}k∈Z≥0
be the previously described sequence of sampling times.

Also, let {Cn}n∈Z≥0
be a sequence of alphabets with uniformly bounded car-

dinality, i.e. ∃M > 0, #Ci < M,∀i ∈ Z≥0. We call the elements q of a finite

alphabet symbols. Furthermore, let {γn}n∈Z≥0
be a sequence of functions

such that γn :
∏n−1

i=0 Ci × Rd(n+1) → Cn, where γn is called the coder mapping

at time n. We can write the coder mapping in the following more explicit

way

γ0 : x(τ0) 7→ q0,

γn : (q0, . . . , qn−1, x(τ0), . . . , x(τn)) 7→ qn,

where qn ∈ Cn for all n ∈ Z≥0 .

The average data-rate of a coder-estimator scheme is defined as

b := lim sup
j→∞

1

tj

j∑
i=0

log
(
#Ci

)
. (2.3)
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2.1.1 Example

Now, we present an example that motivates our study. This example consid-

ers a randomly switched system. Our goal with this example is to show that

we can use information about the switching signal to design a quantization

algorithm that outperforms methods that treat the individual modes sepa-

rately in terms of average data-rate. We revisit this example several times

in this chapter as we develop our theory.

Example 2.1.1. Let B1 =

(
0.9 0.03

0 1

)
and B2 =

(
1.1 0.02

0 1

)
be the

modes of our discrete-time switched system. This implies that Ãk ∈ {B1, B2}
for k ∈ Z≥0. We see that mode B2 is unstable. Thus, using the stan-

dard quantization scheme [7], which guarantees a uniformly bounded esti-

mation error using the minimum average data-rate for each mode separately,

will force us to use a positive average data-rate whenever that mode is ac-

tive. Nevertheless, in this chapter, we show that if our switching signal

comes from a Markov chain defined by the matrix of transition probabilities

P =

(
0.1 0.9

0.9 0.1

)
, where Pij is the transition probability from mode i to

mode j, then, we can design an algorithm that estimates the state with a uni-

formly bounded estimation error and that operates with an average data-rate

arbitrarily close to zero, with probability one.

Later in this document, we describe a quantization scheme that recon-

structs the state using an average data-rate arbitrarily close to the estimation

entropy for a large class of switched systems, which we call regular systems.

It is remarkable that, with probability one, Markov Jump Linear Systems,

like the one in this example, are in this class.

2.2 Estimation Entropy

In the present section, we introduce several instrumental concepts, including

estimation entropy and Lyapunov exponents. We use those concepts to derive

an upper bound for the estimation entropy discrete-time switched systems.

More explicitly, we give an upper bound for the estimation entropy using

the Lyapunov exponents. Furthermore, when we assume that our system

is Lyapunov regular, we prove that that upper bound coincides with the

11



estimation entropy’s value. We need to mention that the definitions presented

in this section are adaptations of definitions provided in other works, namely:

[13], Chapter 2 of [36], and Chapter 3 of [38].

Throughout this document, for a sequence of invertible matrices (An)n∈N ⊂
M(d,R), we denote the discrete-time state-transition matrix of the system

(2.2) by

Φn := An · · ·A1. (2.4)

Further, we define An := Ãk for n = k + 1 with2 k ∈ Z≥0. We assume

that K ⊂ Rd, the set of possible initial conditions, is a compact set with a

nonempty interior. Further, the solution of (2.2) at time step n with initial

condition x ∈ Rd is given by ξ(x, n) = Φnx, where the matrix sequence comes

from the right-hand side of (2.2).

For the next two definitions, pick an α ≥ 0, and let T ∈ N be the time

horizon.

Definition 2.2.1. For every ϵ > 0, we call a finite set of functions X̂ ={
x̂1(·), . . . , x̂N(·)

}
, from {0, . . . , T − 1} to Rd, a (T, ϵ, α,K)-approximating set

if for every initial condition x ∈ K, there exists x̂i ∈ X̂ such that ||ξ(x, n)−
x̂i(n)|| < ϵe−αn, ∀n ∈ {0, . . . , T − 1}. Let sest(T, ϵ, α,K) be the minimum

cardinality of a (T, ϵ, α,K)- approximating set. We define the estimation

entropy as

hest(α,K) := lim
ϵ→0

lim sup
T→∞

1

T
log sest(T, ϵ, α,K).

Definition 2.2.2. For every ϵ > 0, we call a finite set of points S =

{x1, . . . , xN} ⊂ K a (T, ϵ, α,K)-spanning set if for every initial state x ∈
K, there exists xi ∈ S such that ||ξ(x, n) − ξ(xi, n)|| < ϵe−αn, ∀n ∈
{0, . . . , T − 1}. Let s∗est(T, ϵ, α,K) be the minimum cardinality over all pos-

sible (T, ϵ, α,K)- spanning set.

Theorem 1 from [13] tells us that

hest(α,K) = lim
ϵ→0

lim sup
T→∞

1

T
log s∗est(T, ϵ, α,K).

We use this characterization of the estimation entropy in the proof of Theo-

rem 2.2.6.
2Notice that A1 = Ã0. Thus, An = Φ(Tpn, Tp(n− 1)) for n ∈ N. We make this choice

to be consistent with the literature.
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Definition 2.2.3. A Lyapunov index is a function λ : Rd → R∪{−∞} with

the following properties:

• λ(κv) = λ(v), for every real κ ̸= 0

• λ(v + w) ≤ max {λ(v), λ(w)}

• λ(0) = −∞

A Lyapunov index λ(·) can take at most d distinct real values (see, e.g.,

[36]). We recall that the value −∞, corresponding to λ(0), is not a real value.

Definition 2.2.4. The Lyapunov exponent associated with a sequence of

matrices (An)n∈N is the following Lyapunov index3:

λ(v) := lim sup
n→∞

1

n
log (||Φnv||) ,

for v ∈ Rd \ {0}. Also, we define λ(0) := −∞.

The Lyapunov exponent, λ(·) is a special Lyapunov index (see, e.g., [36]).

Thus, we note that its image has at most d distinct values. We denote these

values by χi, for i ∈ [q], where q ≤ d, and we index them according to the

increasing order for real numbers, i.e., χ1 < · · · < χq. We call χi, i = 1, . . . , q

the Lyapunov exponent values.

Definition 2.2.5. A filtration (or flag) on Rd is a family of vector subspaces

V = (Ei)
q
i=0, with q ≤ d, such that {0} = E0 ⊊ E1 ⊊ · · · ⊊ Eq = Rd. Further,

we call V = {vi}di=1 a normal basis of the filtration V if it is a basis for Rd,

and for every j ≥ 1, the subset of V given by {vi}
dim(Ej)
i=1 is a basis for Ej.

In this document, we are interested in a specific type of filtration: the

Oseledets’ filtration.

Definition 2.2.6. A filtration Vλ associated with the sequence of invertible

matrices (An)n∈N such that Ei =
{
v ∈ Rd : λ(v) ≤ χi

}
, where λ(·) is the

Lyapunov exponent for the sequence, and χi are the Lyapunov exponent

values of the sequence previously defined, is called an Oseledets’ filtration.

Also, the subspaces Ei ∈ Vλ are called Oseledets’ subspaces. In addition,

the following dim(Ei)− dim(Ei−1) is called the multiplicity of the Lyapunov

3Note that the function does not change if we change the norm.
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exponent value χi. If4 dim(Ei) − dim(Ei−1) = 1 for every i ∈ {1, . . . , q}, we
say that the Lyapunov exponents are simple. Finally, define Λ = {λj}dj=1

as an ordered list with repetition where for every j = 1, . . . , d, there exists

some i ∈ {1, . . . , q} such that λj = χi, and for every i = 1, . . . , q, χi appears

dim(Ei) − dim(Ei−1) times in Λ. The order in Λ can be any total order

relation in the set Λ chosen among those for which λ1 ≤ · · · ≤ λd. We call

the elements λi ∈ Λ the Lyapunov exponents with multiplicity of (An)n∈N.

The Oseledets’ filtration depends on the entire sequence (An)n∈N. We

illustrate that fact with the next example.

Example 2.2.1. Let A =

(
2 0

0 4

)
and B =

(
0 1

1 0

)
. Notice that the

sequences A′
n = A for all n ∈ N, and the sequence An = A for n ∈ N \ {N}

and AN = B for some N ∈ N, have the same Lyapunov exponents. However,

these sequences have different Oseledets filtrations. We can see that the

Oseledets’ filtration of the first sequence is E1 = span
{(

1 0
)⊤} ⊊ E2 =

R2. The second sequence, on the other hand, has an Oseledets filtration given

by E1 = span
{(

0 1
)⊤} ⊊ E2 = R2.

Definition 2.2.7. A sequence (An)n∈N is called tempered if

lim
n→∞

1

n
log ||An|| = 0.

If the sequence (An)n∈N is uniformly bounded, then it is tempered. In

particular, if (An)n∈N has finitely many values, then it is temperedness. Re-

markably, temperedness does not imply a sub-exponential growth rate for

Φn. One counter-example is the sequence An = n, which is tempered be-

cause limn→∞
log(n)

n
= 0, but Φn = n! grows faster than any exponential.

Example 2.2.2 (Example 2.1.1 revisited.). We take this opportunity to re-

visit Example 2.1.1. Let {e1, e2} be the canonical basis for R2. Also, we

denote by aij(n) the element in the i-th row and j-th column of the matrix

An. Further, we denote by ϕij(n) the elements of the matrix Φn. Further-

more, denote by mi(n) =
∑n

k=1 I{
(An)n∈N:Ak=Bi

}((An)n∈N), where IA(·) is the
indicator function, i.e., IA(x) = 1 if x ∈ A and IA(x) = 0, otherwise. The

quantity mi(n) counts how many times mode i was active until time n.

4Equivalently, we could say that d = q.
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A simple computation shows us that ϕ11(n) = 0.9m1(n)1.1m2(n), ϕ22(n) = 1,

and ϕ12(n) = a11(n)ϕ12(n − 1) + a12(n) for n ≥ 1 with initial conditions

ϕii = 1 and ϕij = 0 if i ̸= j. Then, the Lyapunov exponents of the sequence

(An)n∈N are given by

λ(e1) = lim sup
n→∞

1

n
log(∥Φne1∥)

= lim sup
n→∞

1

n
log
(
0.9m1(n)1.1m2(n)

)
= lim sup

n→∞

m1(n)

n
log(0.9) +

m2(n)

n
log(1.1).

Now, note that the average time an ergodic Markov chain remains on mode

i is, with probability one, πi, where πi comes from the solution to the system

of equations π = πP and
∑2

i=1 πi = 1, where (π1, π2) = π. This latter

fact leads us to the conclusion that, with probability one, realizations of

our Markov process will be such that the fractions mi(n)
n

converge to πi for

i ∈ [2]. Thus, λ(e1) =
1
2
log(0.99) < 0. We further note that we can interpret

ϕ12(n) = a11(n)ϕ12(n − 1) + a12(n) as a scalar linear time-varying system

with an input a12(n). Therefore, if
∏n

j=1 a11(j) < 1 and a12(n) are bounded,

we conclude that ϕ12(n) is bounded. Simple calculations show us that a12(n)

and
∏n

j=1 a11(j) = 0.9m1(n)1.1m2(n) are bounded. We can now compute λ(e2)

by noticing that ∥Φne2∥ = max {ϕ12(n), 1} is bounded, hence λ(e2) = 0 with

probability 1.

Finally, note that the filtration E1 = span {e1} ⊊ E2 = R2 is the Oseledets’

filtration and that {e1, e2} forms a normal basis for it.

We remark that, although the sequence
(
An

)
n∈N

comes from a stochastic

process, we calculated the values of the Lyapunov exponents for a generic

realization. Thus, we always choose a specific realization, as in the determin-

istic case. Nonetheless, we use the Markov chain’s properties to show that

our result holds for almost all realizations of the random process.

Definition 2.2.8. A sequence (An)n∈N is called (Lyapunov) regular if

lim
n→∞

1

n
log (|det (Φn)|) =

d∑
i=1

λi.

We call a system given by Equation (2.2) regular, if its associated matrix
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sequence is regular.

We use the following two examples to illustrate the notion of regularity.

Example 2.2.3. In this example, we denote by {e1, e2} the canonical ba-

sis in R2. Let ρ > 1, B1 =

(
ρ 0

0 ρ−1

)
, and B2 =

(
ρ−1 0

0 ρ

)
. Now,

we build a matrix sequence in the following way: let An = B1, when n ∈
{2i, · · · , 2i+1 − 1} for i ∈ N odd, and let An = B2, otherwise. We no-

tice that det (|Φn|) = 1 regardless of the sequence (An)n∈N since det(B1) =

det(B2) = 1. Consider the subsequence with indices nk = 2k for k ∈ N.

Then, using induction, we see that ∥Φnk
(e1)∥ = ρ−

∑k
i=1(−2)i−1+(−1)k . Thus,

log(∥Φnk
(e1)∥)

2k
=
∑k

ℓ=1

(
(−1)ℓ+1(2)−ℓ + (−1)k2−k

)
log(ρ), after the change of

varibles ℓ = −i + k + 1. Further restricting ou analizys to the subsequence

with indices nk = 2k for k even, we show that limk→∞
∑k

ℓ=1(−1)ℓ+1(2)−ℓ

log(ρ) + (−1)k2−k log(ρ) = 1
3
log(ρ) > 0. Therefore, the largest Lyapunov

exponent must be positive since λ(e1) > 0. However, we have det (|Φn|) = 1,

which implies that the sequence cannot be regular.

Example 2.2.4. Now, we use the same matrices B1 and B2 as in Example

2.2.3, but we consider a different sequence. Let An = B1, whenever n is

divisible by 4, and An = B2, otherwise. Further, denote by {e1, e2} the

canonical basis of R2. Thus, simple calculations show us that λ(e1) = −1
2
log ρ

and λ(e2) = 1
2
log ρ. Hence, we conclude two things: first, the sequence

is regular. Second, the canonical basis {e1, e2} is a normal basis for the

Oseledets’ filtration.

Note that, in Example 2.2.3, we cannot replace the limit superior that

appears in Definition 2.2.4 by a usual limit. However, we can replace it in

Example 2.2.4. One might wonder if regularity is related to this behavior

since the sequence from Example 2.2.4 is regular while the one in Example

2.2.3 is not. Interestingly, that is precisely the case. Lemma 2.2.5, which

presents equivalent characterizations for regularity, helps us understand that

better. We readily see that the second bullet of Lemma 2.2.5, applied when

I is a singleton, implies the claim we just made, i.e., we can only replace the

limit superior by a limit when the sequence is regular.

We remark that Lemma 2.2.5 is a classical result from the dynamical sys-

tem’s literature. We refer to Chapters 3 and 7 of [36] for a proof.
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Lemma 2.2.5. Given a tempered sequence (An)n∈N of invertible matrices, let{
v1, . . . , vd

}
be any normal basis for the Oseledets’ filtration of the sequence

(An)n∈N, and let I ⊂ {1, · · · , d} be any set of indices. Further, let λi be the

Lyapunov exponents with multiplicity of the sequence (An)n∈N. Then, the

following conditions are equivalent

• limn→∞
1
n
log (|det (Φn)|) =

∑d
i=1 λi;

• limn→∞
1
n
log (vol ({Φnvi : i ∈ I})) =

∑
i∈I λi.

• The matrix limn→∞
(
Φ⊤

nΦn

) 1
2n exists.

Now, we state the section’s main Theorem. The proof of this theorem

appears in the work [20].

Theorem 2.2.6. Let α ≥ 0. Let (An)n∈N be a tempered sequence of invert-

ible matrices. Let K ⊂ Rd be a compact set of possible initial conditions

with a nonempty interior. Denote by λi, with i = 1, · · · , d, the Lyapunov

exponents with multiplicity of (An)n∈N. Then, the estimation entropy of the

discrete switched system (2.2) satisfies:

hest(α,K) ≤
d∑

i=1

max {0, λi + α} , (2.5)

with equality if the system is regular.

Proof. For the proof of the upper bound, we build a (T, ϵ, α,K) - approximat-

ing set FT and calculate its cardinality. First, denote by {v1, . . . , vd} a nor-

mal basis for the Oseledets’ filtration associated with the sequence (An)n∈N.

Then, pick an ϵ > 0. Further, choose an arbitrary block length ℓ ∈ N and a

time horizon T ∈ N such that T > ℓ. Also, for a fixed but arbitrary δ > 0,

we define

Γj
i := max

{
max

k∈{0,...,ℓ−1}
∥Φjℓ−kvi∥ , e(λi+δ)jℓ, e(λi+δ)((j−1)ℓ+1)

}
(2.6)

for i ∈ {1, . . . , d} and j ∈ {1, . . . , ⌈(T − 1)/ℓ⌉}, and Γ0
i := 1 for i ∈ {1, . . . , d}.

Consider the box B0 :=
{∑d

i=1 γivi : κ
0
i ≤ γi < κ0

i

}
, where κ0

i and κ0
i are

such that K ⊂ B0 and diam (B0) < ∞. Further, consider the following sets:

C0
i :=

{
1, · · · ,

⌈
d
κ0
i−κ0

i

ϵ

⌉}
for i ∈

{
1, . . . , d

}
, and Cj+1

i :=
{
1, · · · ,

⌈
Γj+1
i

Γj
i

eαℓ
⌉}

for i ∈ {1, . . . , d} and j ∈ {0, . . . , ⌈(T − 1)/ℓ⌉}. Now, define the set Q of all
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ordered tuples
(
q0, . . . , q⌈(T−1)/ℓ⌉) with qj =

(
qj1, . . . , q

j
d

)
and qji ∈ Cj

i . For a

given q =
(
q0, . . . , q⌈(T−1)/ℓ⌉) ∈ Q, we build a function x̂q(·) such that the

value of the function at time t ∈ {0, . . . , T − 1}, i.e. x̂q(t), depends only on(
q0, . . . , q⌈t/ℓ⌉

)
. Before presenting the function’s construction, consider the

following recursive definitions:

κj+1
i (q) := κj

i (q) +
ϵ

d

(
Γj
ie

αjℓ
)−1 (

qji − 1
)
, (2.7)

κj+1
i (q) := κj

i (q) +
ϵ

d

(
Γj
ie

αjℓ
)−1

qji (2.8)

where i ∈ {1, . . . , d}, j ∈ {0, . . . , ⌈(T − 1)/ℓ⌉}, and q ∈ Q.

Now, define for j ∈ {0, . . . , ⌈(T − 1)/ℓ⌉}, i ∈ {1, . . . , d}, and q ∈ Q the

quantity

β̂j
i (q) := κj

i (q) +
ϵ

d

(
Γj
ie

αjℓ
)−1

(qji − 1/2). (2.9)

Finally, for t ∈ {0, . . . , T − 1} and a given q ∈ Q, define the function x̂q(t) :=∑d
i=1 β̂

j
iΦtvi, where j = ⌈t/ℓ⌉− 1, i.e. j is such that jℓ+1 ≤ t ≤ (j+1)ℓ. In

words, we are using the same βi estimate β̂j
i for all t such that j = ⌈t/ℓ⌉ − 1

holds true. Further note that any such t satisfy t = (j + 1)ℓ − k for some

k ∈ {0, . . . , ℓ− 1}.
Notice that, for given q ∈ Q, i ∈ {1, . . . , d}, and j ∈ {1, . . . , ⌈(T − 1)/ℓ⌉} the

estimate β̂j
i (q) is the midpoint of

[
κj+1
i (q), κj+1

i (q)
)
by Equations (2.9), (2.7),

and (2.8). Also, note that for any given β ∈
[
κj+1
i (q), κj+1

i (q)
)
, we have that∣∣∣β̂j

i (q)− β
∣∣∣ < ϵ

2d

(
Γj
ie

αjℓ
)−1

again by Equations (2.9), (2.7), and (2.8). Now,

let FT be the set of functions x̂q(·) for q ∈ Q.

We claim that FT is a (T, ϵ, α,K)-approximating set. To see that, let x ∈
K and write it as x =

∑d
i=1 βivi. We proceed by induction over j ∈

{0, . . . , ⌈(T − 1)/ℓ⌉} to show that there exists a q ∈ Q such that the cor-

responding β̂j
i (q) satisfies5

∣∣∣β̂j
i (q)− βi

∣∣∣ < ϵ
2d

(
Γj
ie

αjℓ
)−1

. Consequently, we

conclude that the corresponding x̂q(·) satisfies ∥x̂q(t)− ξ(x, t)∥ < ϵe−αt for

t ∈ {0, . . . , T − 1}.
Step 0:

We have that βi ∈ [κ0
i , κ

0
i ) for i ∈ {1, . . . , d} by definition of B0. Let q0 =

(q01, . . . , q
0
d), with q0i ∈ C0

i , be such that βi ∈ [κ1
i (q), κ

1
i (q)) for every i ∈

{1, . . . , d}. Notice that κ1
i (q) and κ1

i (q) depend only on κ0
i , κ

0
i , and q0i . By

5Notice that this is equivalent to βi ∈
[
κj+1
i (q), κj+1

i (q)
)
.
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Equations (2.9), (2.7), and (2.8), we have that
∣∣∣βi − β̂0

i (q)
∣∣∣ ≤ ϵ

2d
. Thus, for

any x̂q(·) ∈ FT , with q ∈ Q and q0 as the one described here, we have that

∥x̂q(0)− ξ(x, 0)∥ =
∥∥∥∑d

i=1

(
βi − β̂0

i (q)
)
vi

∥∥∥ ≤ ϵ
2d

∥∥∥∑d
i=1 vi

∥∥∥ ≤ ϵ
2
, where the

last inequality comes from the fact that ∥vi∥ = 1.

Step j+1:

From our induction hypothesis, βi ∈
[
κj
i (q), κ

j
i (q)

)
for i ∈ {1, . . . , d}. Now,

let qj =
(
qj1, . . . , q

j
d

)
, with qji ∈ Cj

i , be such that βi ∈
[
κj+1
i (q), κj+1

i (q)
)

for every i ∈ {1, . . . , d}. Notice that κj+1
i (q) and κj+1

i (q) depend only on

κj
i (q), κj

i (q), and qji . By Equations (2.9), (2.7), and (2.8), we have that∣∣∣βi − β̂j
i (q)

∣∣∣ ≤ ϵ
2d

(
Γj
ie

αjℓ
)−1

. Thus, for (j − 1)ℓ + 1 ≤ t ≤ jℓ and for any

x̂q(·) ∈ FT , with q ∈ Q and (q0, . . . , qj) as the one inductively described here,

we have that

||x̂q(t)− ξ(x, t)|| =

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

(
β̂j
i (q)− βi

)
Φtvi

∣∣∣∣∣
∣∣∣∣∣

≤ ϵ

2d
e−αjℓ

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

Φtvi

Γj
i

∣∣∣∣∣
∣∣∣∣∣ ≤ ϵ

2
e−αt,

where the last inequality comes from the facts that6 ∥Φtvi∥ ≤ Γj
i and e−αjℓ ≤

e−αt for t ∈ {(j − 1)ℓ+ 1, . . . , jℓ}. With this, we conclude the induction.7

Since there exists a one-to-one correspondence between elements of Q and

FT , the cardinality of FT is given by
∏⌈(T−1)/ℓ⌉

j=0

(∏d
i=1 #Cj

i

)
. Also, because

FT is a (T, ϵ, α,K)-approximating set, its cardinality is an upper bound for

sest (T, ϵ, α,K), the minimum cardinality of any (T, ϵ, α,K)-approximating

set. Therefore, we conclude that

1

T
log sest (T, ϵ, α,K) ≤ 1

T

⌈(T−1)/ℓ⌉∑
j=0

d∑
i=1

log
(
#Cj

i

)
.

Recall that, by the definition 2.2.4 of Lyapunov exponent, for any given

δ > 0, ∃Ni ∈ N such that ∀t ≥ Ni we have that 1
t
log (∥Φtvi∥) ≤ λi + δ for a

given i ∈ {1, . . . , d}, from which we get that ∥Φtvi∥ ≤ e(λi+δ)t for all t ≥ Ni.

6An immediate consequence of Equation (2.6).
7We need a minor change for the final step, i.e. j = ⌈(T − 1)/ℓ⌉, in the induction

process. Because of the domain of x̂q(·), we have to consider (⌈(T − 1)/ℓ⌉ − 1)ℓ ≤ t ≤ T
instead of (⌈(T − 1)/ℓ⌉− 1)ℓ ≤ t ≤ ⌈(T − 1)/ℓ⌉ℓ . This is the only change needed to prove
the induction.
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We restrict our choice of δ to be such that λi + δ < 0 for all λi < 0 with

i ∈ {1, . . . , d}. However, we can choose δ > 0 arbitrarilly small. Now, from

Equation (2.6), we have that Γj
i = e(λi+δ)jℓ if λi ≥ 0, and Γj

i = e(λi+δ)((j−1)ℓ+1)

if λi < 0, with both equalities being valid for all j such that (j−1)ℓ+1 ≥ Ni.

For simplicity denote M := max
{⌈

Ni−1
ℓ

+ 1
⌉
, i = 1, . . . , d

}
. Therefore, it is

true that
Γj+1
i

Γj
i

= e(λi+δ)ℓ for j ≥ M and i ∈ {1, . . . , d}. From our previous

discussion, with our previously fixed δ, we have the following inequality

hest(α,K) ≤ lim
ϵ→0

lim sup
T→∞

1

T

M∑
j=0

d∑
i=1

log
(
#Cj

i

)
− (M + 1)

T

d∑
i=1

log
(⌈
e(λi+α+δ)ℓ

⌉)
+

1

ℓ

d∑
i=1

log
(⌈
e(λi+α+δ)ℓ

⌉)
where we notice that the first two terms on the right hand side vanish when

T goes to infinity. Thus, we have that hest(α,K) ≤ 1
ℓ

∑d
i=1 log

(⌈
e(λi+α+δ)ℓ

⌉)
.

Since δ > 0 can be arbitrarily small, this shows that

hest(α,K) ≤ 1

ℓ

d∑
i=1

log
(⌈
e(λi+α)ℓ

⌉)
.

Finally, because ℓ can be made arbitrarily large, we get inequality (2.5).

Here, we used the fact that limℓ→∞
1
ℓ
log
(⌈
eyℓ
⌉)

= max {y, 0} for y ∈ R. To

see this, note that we have
⌈
eyℓ
⌉
= 1 for y ≤ 0, so log

(⌈
eyℓ
⌉)

= 0, and we

have that y ≤ 1
ℓ
log
(⌈
eyℓ
⌉)

≤ 1
ℓ
log
(
eyℓ(1 + e−yℓ)

)
= y + 1

ℓ
log
(
1 + e−yℓ

)
for

y > 0, from which we conclude that the limit equals max {y, 0}.
For the lower bound, assume that (An)n∈N is regular. Let {v1, . . . , vd} be a

normal basis for the Oseledets’ filtration associated with (An)n∈N. Further,

fix an arbitrary δ > 0 and pick an ϵ > 0. Define I :=
{
i ∈ {1, . . . , d} :

λi + α+ δ > 0
}
a set of indices and U :=

{∑
i∈I γivi : κi ≤ γi ≤ κi

}
, with κi

and κi such that U ⊂ K, which is always possible because K has nonempty

interior. For simplicity, assume that κi = 0 and κi = κ for all i ∈ I. If this

is not the case, translate the set K so that the origin will be in its interior,

a transformation that does not change the #I-th volume. Therefore, U is

the parallelepiped {κivi : κi ∈ [0, κ]} with #I-th volume given by vol(U) =

(κ)#Ivol({vi : i ∈ I}).
Now, from the regularity hypothesis and the second bullet in Lemma 2.2.5,
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for our δ > 0, ∃N ∈ N such that ∀j > N we have that∣∣∣∣∣1j log vol ({Φjvi : i ∈ I})−
∑
i∈I

λi

∣∣∣∣∣ ≤ δ#I,

which implies that vol ({Φjvi : i ∈ I}) ≥ e
∑

i∈I(λi−δ)j.

Notice that the parallelepiped ΦjU =
{∑

i∈I γiΦjvi : 0 ≤ γi ≤ κ
}

has the

#I-th volume equal to vol(ΦjU) = (κ)#Ivol ({Φjvi : i ∈ I}). Now, let C =

{x1, · · · , xN} be an (T, ϵ, α, U)-spanning set. We show how the cardinality

of C compares with the minimum cardinality, s∗est, of a (T, ϵ, α, U)-spanning

set.

First, recall that B (x, r) is the infinity-norm ball (hypercube) centered at x

with radius r. Define B(j,I)(x, r) := B(x, r) ∩
{∑

i∈I γiΦjvi : γi ∈ R
}
, i.e. the

intersection of the ball with the subspace spanned by the vectors Φjvi for

i ∈ I. Now, since C is (T, ϵ, α, U)-spanning, we cover ΦTU with balls of ra-

dius ϵe−αT centered at ΦTxi for xi ∈ C. Because the balls B(j,I) (ΦTxi, ϵe
−αT
)

cover ΦTU , the sum of their #I-th volumes, i.e. the cardinality of C times the

#I-th volume of a single ball, is larger than or equal to the #I-th volume

of ΦTU . From this, we conclude that #C ≥ vol(ΦTU)
vol(B(ΦT xi,ϵe−Tα))

. Lastly, be-

cause s∗est(T, ϵ, α, U) is the lowest value for the cardinality of any (T, ϵ, α, U)-

spanning set, we conclude that

s∗est(T, ϵ, α, U) ≥ vol(ΦTU)

vol(B(ΦTxi, ϵe−Tα))
=

(
κ

2ϵe−Tα

)#I

vol ({ΦTvi : i ∈ I}) .

It is straightforward to see that s∗est(T, ϵ, α,K) ≥ s∗est(T, ϵ, α, U), by the fact

that any (T, ϵ, α,K)-spanning set is also a (T, ϵ, α, U)-spanning set. Thus,

we arrive at s∗est(T, ϵ, α,K) ≥
(

κ
2ϵe−Tα

)#I
vol ({ΦTvi : i ∈ I}). Furthermore,

we have that

hest(K,α) ≥ lim
ϵ→0

lim sup
T→∞

1

T

(
log

(
κ

2ϵ

)#I

+ log vol ({ΦTvi : i ∈ I})
)
+ α#I,

and, since T can be taken to be larger than N , we derive that hest(K,α) ≥
limϵ→0 lim supT→∞

1
T

(
log
(

κ
2ϵ

)#I
)
+
∑

i∈I(λi +α− δ), and we conclude that

hest(α,K) ≥
∑

i∈I(λi + α − δ) =
∑d

i=1 max {λi + α− δ, 0}, where the last

equality comes from the definition of I. Finally, by the fact that δ > 0 was

arbitrary, we have that hest(α,K) ≥
∑

i∈I max {λi + α, 0}.
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Example 2.2.7 (Example 2.1.1 revisited.). We can finally resume the anal-

ysis of Example 2.1.1. By our previous computations in Section 2.1, we con-

cluded that our system’s Lyapunov exponents are λ(e1) = 1
2
log(0.99) < 0

and λ(e2) = 0 with probability one. Thus, we deduce that the system’s

estimation entropy satisfies the inequality

hest(α,K) ≤ max

{
1

2
log(0.99) + α, 0

}
+max {α, 0} (2.10)

with probability 1.

2.2.1 Connection with previous results

We take this opportunity to draw a connection between the results from [26]

and those from this chapter. We note that [26] obtained bounds that depend

solely on the individual modes and their respective active rates. The first

important remark we must make is that we cannot deduce the results we

presented so far cannot from the results from [26]. To understand why, we

need a few definitions: denote by µ(A) = limt↓0
∥I+tA∥−1

t
the matrix measure

of the matrix A, and by 1p(σ) the indicator function of mode p, i.e. 1p(q) = 1

if p = q and 1p(q) = 0, otherwise. Finally, define the active rate of mode

p as ρp(t) =
1
t

∫ t

0
1p(σ(τ))dτ . The upper bound for the topological entropy

obtained in [26] is

hest(0, K) ≤ max
{
lim sup
t→∞

∑
p∈Σ

µ(Aσ(t))ρp(t)d, 0
}
.

We can easily see that that bound is conservative. For example, consider a

system that never switches and for which its only active mode has a unique

unstable eigenvalue. We can take A =

(
2 0

0 −2

)
to make our example

more concrete. We easily see that, by the properties of the matrix measure,

we must have that µ(A) ≥ 2. Also, the topological entropy is 2, but the

upper bound is greater or equal to 4. This example shows that we must

consider the eigenstructure of the mode in our analysis. That is precisely

the role of the Oseledets’ filtration. We can divide a normal basis for this

filtration into vectors corresponding to nonnegative Lyapunov exponents and

the ones corresponding to negative ones. Analyzing only the former ones, we
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focus our attention on the directions where our system does not contract,

which allows us to arrive at the correct value for the topological entropy in

this case. In this manner, we avoid the conservative bound from [26].

The lower bound obtained in [26] was the following:

hest(0, K) ≥
{
lim sup

t→0

∑
p∈Σ

tr(Ap)ρp(t)
}
.

The proof of that inequality relied on the classical volume counting argument,

as in Theorem 2.2.6. As expected, geometric reasons prevented this lower

bound from being tight. More explicitly, the volume considered in [26] was

d−dimensional. Thus, if there is a direction in the state space where the

state is contracting, then the volume will decrease. Consider, for example,

the mode A =

(
2 0

0 −3

)
. It has a negative trace but a positive topological

entropy. The two-dimensional volume of the set of initial conditions will

decrease, but a one-dimensional subspace will grow. In Theorem 2.2.6, we

deal with that issue by removing those shrinking directions and only looking

at the expansive ones. Once again, the restrictive setting of only knowing

the active rate prevents the bound from being tight.

It is worth mentioning that knowing the Oseledets’ filtration requires com-

plete knowledge of the whole switching signal, even at future times. Hence,

although the result from Theorem 2.2.6 is tighter, it also requires much more

information than the bounds obtained in [26].

We remark here that regularity, informally, means that the geometric no-

tion of expanding directions and the notion of an expanding volume form are

compatible. This latter fact allows us to get the identity in Theorem 2.2.6.

2.3 Quantization Algorithm

The goal of this section is to describe the quantization algorithm. This algo-

rithm’s purpose is to reconstruct the state of system (2.2) with an estimation

error that decays with a prescribed exponential rate using only quantized

measurements. The algorithm produces over-approximations to the reach-

able set that depend on some parameter choices, the switching signal, and

the desired exponential decay for the estimation error. One important pa-
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rameter is a family of bases Vj =
{
vj1, . . . , v

j
d

}
, j ∈ Z≥0 for Rd. How we choose

such a family affects the algorithm’s average data-rate. We show that there

are choices of families that allow our algorithm to operate with an average

data-rate as close to the estimation entropy of our system as desired. More

than that, we show how we can build such a family online, assuming that

the switching signal is known.

We recall that as in Section 2.2, Tp > 0 is a sampling time, and the sequence

(An)n∈N corresponds to8 the exact discrete-time model of some continuous-

time model described by equation (2.1), i.e., An = Φ(Tpn, Tp(n− 1)).

2.3.1 The Algorithm

Now, we are ready to define our quantization scheme for switched linear

systems. We assume that the switching signal is known to us, i.e., σ(t) for

all values of t ∈ R≥0. Note that this implies that we must know the en-

tire sequence (An)n∈N, where An’s appear in Equation (2.2). Further, we

assume that we have a family of orthonormal bases Vj for Rd. By appropri-

ately choosing that family, we can make the average data-rate used by our

algorithm arbitrarily close to the upper bound for the estimation entropy ob-

tained in Theorem 2.2.6, namely
∑d

i=1 {λi + α, 0}. Consequently, under the
assumption of regularity, as we proved in Theorem 2.2.6, the algorithm will

operate with an average data-rate arbitrarily close to the estimation entropy.

Before we proceed, we need some additional concepts. Let ℓ ∈ N be

the block length, and let j ∈ N be a number that indexes our algorithm’s

iteration. We also need to mention that the following description is only

valid for positive times because the case of time equal zero is slightly different

because of how we initialize our algorithm. Nevertheless, the idea behind the

algorithm mechanism is essentially the same for all time indexes. Informally,

the algorithm operates in the following manner: Let the initial state x be

inside the region B̄j−1, a parallelepiped in Rd. Given a basis
{
vji
}d
i=1

from

the family Vj, build a new parallelepiped B̃j with sides parallel to the vectors

vji ’s that contains B̄
j−1. Now, we flow B̃j forward using Φjℓ+1 and denote it

by Bj. More precisely, we define Bj = Φjℓ+1(B̃
j). Note that, since x belongs

to B̄j−1 and B̄j−1 ⊂ B̃j, we have that the state at the current time jℓ + 1,

8As described after equation (2.4), i.e., An = Ãk for n = k + 1 and k ∈ Z≥0.
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i.e. ξ(x, jℓ + 1), belongs to Bj. We have quantization subregions inside the

set Bj, each corresponding to a distinct quantization symbol. We denote

by qj the quantization symbol corresponding to the quantization subregion

that contains ξ(x, jℓ+1). Next, we flow the previous quantization subregion,

which corresponds to the symbol qj, backward by Φjℓ+1 and define the result

to be B̄j. Finally, we repeat the procedure.

We must stress that our algorithm will work for an arbitrary choice of bases{
vji
}d
i=1

with j ∈ Z≥0. However, the choice of bases affects the average data-

rate used by our algorithm. We show in Corollary 2.3.2 and Theorem 2.3.4

how to choose bases that guarantee that the average data-rate will approach

the estimation entropy asymptotically. Finally, we note that we construct

our estimates using only measurements that happen at time instants of the

form t = jℓ + 1 with j ∈ Z≥0 and at the initial time t = 0. The reason

why we only use measurements at those times is related to the idea of block

coding (see, e.g., Chapter 5 of [39]). As we will see later, this idea allows the

algorithm’s average data-rate to approach the estimation entropy arbitrarily

close in some cases.

In what follows, we assume that Rd is endowed with the canonical inner

product ⟨·, ·⟩. The following algorithm, proof of correctness, and corollary,

were first presented in [20].

Quantizer algorithm

Initialization: Let K be the set of possible initial conditions, x ∈ K be

the true initial condition, ϵ > 0 a prescribed precision, Tp > 0 the sampling

time, and ℓ ∈ N be the block length. Also, consider the sequence (An)n∈N,

where9 An = Φ(Tpn, Tp(n − 1)) and Φn = An . . . A1. Further, let Vj ={
vj1, . . . , v

j
d

}
, j ∈ Z≥0 be a family of orthonormal bases for Rd. We define

Γ0
i = 1 for all i ∈ {1, . . . , d}. If the system is known to be regular, set

Γj
i := max

k∈{0,...,ℓ−1}

∥∥Φjℓ−kv
j
i

∥∥ , (2.11)

otherwise

Γj
i := max

{
max

k∈{0,...,ℓ−1}

∥∥Φjℓ−kv
j
i

∥∥ , eTp(λi+δ)jℓ, eTp(λi+δ)((j−1)ℓ+1)

}
(2.12)

9Note that (An)n∈N ⊂ M(d,R) might be an infinite set in general.
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for a prescribed δ > 0 and10 λi := lim supj→∞
1
j
log
(
||Φjv

j
i ||
)
. Also, let α ≥ 0

be the prescribed exponential decay rate for the estimation error.

Step 0:

In this step, we define an estimate x̂(0) for ξ(x, 0) = x.

• Define

B0 :=

{
d∑

i=1

γiv
0
i : κ0

i ≤ γi < κ0
i

}
, (2.13)

where κ0
i and κ0

i are such that B0 is the smallest set of such type that

contains the initial set K.

• Write ξ(x, 0) =
∑d

i=1 β
0
i v

0
i . Then, the symbol related to the quantized

value of ξ(x, 0) is given by q0 = (q01, . . . , q
0
d), constructed as follows.

Define C0
i :=

{
1, . . . ,

⌈
d
κ0
i−κ0

i

ϵ

⌉}
. We define q0i , for every i ∈ {1, . . . , d},

as the k ∈ C0
i such that

β0
i ∈

[
κ0
i +

ϵ

d
(k − 1), κ0

i +
ϵ

d
k
)

(2.14)

holds true.

• Denote

β̂0
i := κ0

i +
ϵ

d

(
q0i − 1/2

)
. (2.15)

Our estimate for the state at the moment t = 0 is

x̂(0) :=
d∑

i=1

(
κ0
i +

ϵ

d

(
q0i − 1/2

))
v0i .

We could describe this step 0 in words as follows. B0 is divided into cubic

boxes with sides of length ϵ/d; q0i encodes the position of the box in the i-th

dimension that contains x; and x̂(0) is the center of this box.

Step 1:

In this step, we define an estimate x̂(t) for ξ(x, t) with 1 ≤ t ≤ ℓ.

10Notice that these λi’s are not the same as the Lyapunov exponents with multiplicity
since the vji ’s are not a normal basis for the Oseledets’ filtration in principle.
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Notice that we generated a box

B̄0 :=

{
d∑

k=1

µkv
0
k : κ0

k +
ϵ

d
(q0k − 1) ≤ µk < κ0

k +
ϵ

d
q0k

}
(2.16)

at the end of Step 0 and that x ∈ B̄0. Now, in this step, we generate

the smallest box aligned with the new basis {v1i }
d
i=1 that contains B̄0.

This box takes the form

B̃1 :=

{
d∑

i=1

γiv
1
i : κ1

i ≤ γi < κ1
i

}
.

To compute the bounds κ1
i and κ1

i , let y =
∑d

k=1 µkv
0
k be an arbi-

trary point in B̄0. Thus, its coordinate relative to each v1i is γi =

⟨
∑d

k=1 µkv
0
k, v

1
i ⟩ =

∑d
k=1 µk⟨v0k, v1i ⟩.

Hence, to find the smallest such box, we need to take

κ1
i :=min

{ d∑
k=1

µk⟨v0k, v1i ⟩ : (2.17)

κ0
k +

ϵ

d

(
q0k − 1

)
≤ µk ≤ κ0

k +
ϵ

d
q0k, k = 1, . . . , d

}
,

for every i ∈ {1, . . . , d}. Notice that this is a linear programming

problem. Therefore, the solution will occur at the boundary. Moreover,

this set of inequalities forms a box, and we only need to check its

vertices to find the optimal value. The upper bounds κ1
i are defined

similarly but with max instead of min. Finally, we define the box

B1 :=

{
d∑

i=1

γiΦ1v
1
i : κ1

i ≤ γi < κ1
i

}
(2.18)

by flowing the box B̃1 forward by Φ1. We can write the procedure of

this step in the following itemized way.

• Define B1 :=
{∑d

i=1 γiΦ1v
1
i : κ1

i ≤ γi < κ1
i

}
, where κ1

i is obtained as

described above, and κ1
i is obtained in an analogous fashion by changing

min by max.

• Write ξ(x, 1) =
∑d

i=1 β
1
i Φ1v

1
i . Then, the symbol related to the quan-
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tized value of ξ(x, 1) is given by q1 = (q11, . . . , q
1
d). Define C1

i :=
{
1, . . . ,⌈

dΓ1
i e

Tpαℓ κ
1
i−κ1

i

ϵ

⌉}
. We define q1i , for every i ∈ {1, . . . , d}, as the k ∈ C1

i

such that

β1
i ∈

[
κ1
i +

ϵ

d

e−Tpαℓ

Γ1
i

(k − 1), κ1
i +

ϵ

d

e−Tpαℓ

Γ1
i

k

)
(2.19)

holds true.

• Denote by

β̂1
i := κ1

i +
ϵ

d

e−Tpαℓ

Γ1
i

(q1i − 1/2). (2.20)

Our estimate for the state at the moments 1 ≤ t ≤ ℓ is

x̂(t) :=
d∑

i=1

β̂1
i Φtv

1
i .

Step j+1:

In this step, we define an estimate x̂(t) for ξ(x, t) with jℓ + 1 ≤ t ≤
(j + 1)ℓ. Notice that we generated a box

B̄j :=
{ d∑

k=1

µkv
j
k :κ

j
k +

ϵ

d

e−Tpαjℓ

Γj
k

(qjk − 1) ≤ µk < κj
k +

ϵ

d

e−Tpαjℓ

Γj
k

qjk

}
(2.21)

at the end of Step j and that x ∈ B̄j. Now, in this step, we generate

the smallest box aligned with the new basis
{
vj+1
i

}d
i=1

that contains

B̄j. We define this smallest box as

B̃j+1 :=

{
d∑

i=1

γiv
j+1
i : κj+1

i ≤ γi < κj+1
i

}
,

and obtain κj+1
i and κj+1

i in an analogous manner as we obtained κiq

and κ1
i in Step 1. Finally, we define the box Bj+1 as the box obtained

after flowing B̃j+1 forward by Φjℓ+1. We describe the procedure in the

following itemized way.

28



• Define

Bj+1 :=

{
d∑

i=1

γiΦjℓ+1v
j+1
i : κj+1

i ≤ γi < κj+1
i

}
, (2.22)

where

κj+1
i := min

{
d∑

k=1

µk⟨vjk, v
j+1
i ⟩ : κj

k +
ϵ

d

e−Tpαjℓ

Γj
k

(
qjk − 1

)
≤ (2.23)

µk ≤ κj
k +

ϵ

d

e−Tpαjℓ

Γj
k

qjk, k = 1, . . . , d

}
,

and κj+1
i is obtained in an analogous fashion by changing min by max.

• Write ξ(x, jℓ + 1) =
∑d

i=1 β
j+1
i Φjℓ+1v

j+1
i . Then, the symbol related to

the quantized value of ξ(x, jℓ + 1) is given by qj+1 =
(
qj+1
1 , . . . , qj+1

d

)
.

Let

Cj+1
i :=

{
1, . . . ,

⌈
deTpα(j+1)ℓΓj+1

i

κj+1
i − κj+1

i

ϵ

⌉}
.

We define qj+1
i as the k ∈ Cj+1

i such that

βj+1
i ∈

[
κj+1
i +

ϵ

d

e−Tpα(j+1)ℓ

Γj+1
i

(k − 1), κj+1
i +

ϵ

d

e−Tpα(j+1)ℓ

Γj+1
i

k

)
(2.24)

holds true.

• Denote by

β̂j+1
i := κj+1

i +
ϵ

d

e−Tpα(j+1)ℓ

Γj+1
i

(qj+1
i − 1/2). (2.25)

Then, our state estimate for the time instants jℓ+ 1 ≤ t ≤ (j + 1)ℓ is

x̂(t) :=
d∑

i=1

β̂j+1
i Φtv

j+1
i .

Theorem 2.3.1 proves that Algorithm 2.3.1 generates a coding scheme that

permits us to reconstruct a state estimate with an exponentially decaying

error with a prescribed rate of decay. That theorem also gives us an upper

bound on the average data-rate used by our coding scheme.
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Theorem 2.3.1. Let (An)n∈N be a sequence of matrices that comes from the

exact discretization of the system (2.1) with sampling time Tp > 0. Then,

the algorithm from Section 2.3.1 gives a sequence of estimates (x̂(t))t∈Z≥0

such that ||x̂(t) − ξ(x, t)|| ≤ ϵ
2
e−Tpαt. Further, the average data-rate of the

algorithm from Section 2.3.1 is given by b = lim supj→∞
1

Tptℓ

∑t
j=0 log (#Cj),

with Cj :=
∏d

i=1 C
j
i and #Cj :=

∏d
i=1#Cj

i , where

#Cj+1
i ≤

⌈
eTpαℓ

Γj+1
i

Γj
i

d∑
k=1

∣∣⟨vjk, vj+1
i ⟩

∣∣⌉

for j ∈ Z≥0 and

#C0
i ≤

⌈
d
diam(B0)

ϵ

⌉
.

Proof. Step 0:

Recall that
∣∣∣β̂0

i − β0
i

∣∣∣ ≤ ϵ/2d by equations (2.14) and (2.15). Then,

||x̂(0)− ξ(x, 0)|| =
∥∥∥ d∑

i=1

(
β̂0
i − β0

i

)
v0i

∥∥∥ ≤ ϵ

2

and #C0
i =

⌈
d
κ0
i−κ0

i

ϵ

⌉
≤
⌈
ddiam(B0)

ϵ

⌉
. Finally, notice that x ∈ B̄0 by equations

(2.16) and (2.15).

Step 1:

We need to show that

Φ1

(
B̄0
)
=

{
d∑

i=1

γiΦ1v
0
i : κ0

i +
ϵ

d
(q0i − 1) ≤ γi < κ0

i +
ϵ

d
q0i

}
⊂ B1.

Take y ∈ B̄0 and write it as y =
∑d

k=1 ykv
0
k and recall that κ0

k +
ϵ
d
(q0k − 1) ≤

yk ≤ κ0
k + ϵ

d
q0k for k ∈ {1, . . . , d} by equation (2.16). Now, rewriting y =∑d

i=1

(∑d
k=1 yk⟨v0k, v1i ⟩

)
v1i , we can check that κ1

i ≤
(∑d

k=1 yk⟨v0k, v1i ⟩
)
≤ κ1

i

by the definitions of κ1
i and κ1

i . Thus, Φ1y ∈ B1 by equation (2.18). Since

y ∈ B̄0 was arbitrary, we have that Φ1

(
B̄0
)
⊂ B1.

Now, we need to find an estimate for #C1
i . First, let (γ1

1
, . . . , γ1

d
) be any

argument of the minimum corresponding to the minimization used to de-

fine κ1
i , and let (γ1

1, . . . , γ
1
d) be any argument of the maximum correspond-

ing to the maximization used to define κ1
i . Next, notice that |κ1

i − κ1
i | =∣∣∣∑d

k=1

(
γ1
k − γ1

k

)
⟨v0k, v1i ⟩

∣∣∣ ≤ ϵ
d

∑d
k=1 |⟨v0k, v1i ⟩|, because

∣∣∣γ1
k − γ1

k

∣∣∣ ≤ ϵ/d by
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the fact that11 κ0
i +

ϵ
d
(q0i − 1) ≤ γi < κ0

i +
ϵ
d
for every i ∈ {1, . . . , d}. Thus,

we get the upper bound #C1
i ≤

⌈
Γ1
i e

Tpαℓ
∑d

k=1 |⟨v0k, v1i ⟩|
⌉
.

Further, by equations (2.19) and (2.20), we have that
∣∣∣β̂1

i − β1
i

∣∣∣ ≤ ϵ
2d

e−Tpαℓ

Γ1
i

.

Then, for 1 ≤ t ≤ ℓ we have that

||x̂(t)− ξ(x, t)|| =

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

(
β̂1
i − β1

i

)
Φtv

1
i

∣∣∣∣∣
∣∣∣∣∣ ≤ ϵ

2d
e−Tpαℓ

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

Φtv
1
i

Γ1
i

∣∣∣∣∣
∣∣∣∣∣ ≤ ϵ

2
e−Tpαt,

where the last inequality comes from the facts that
∣∣∣∣∣∣Φtv1i

Γ1
i

∣∣∣∣∣∣
≤ 1 and 1 ≤ t ≤ ℓ. Finally, notice that x ∈ B̄1 because

∑d
i=1 β

1
i v

1
i ∈ B̄1 by

the fact that12 Φ1B̄
1 ⊂ B1 and equation (2.18).

Step j+1:

By our induction hypothesis, we have that x ∈ B̄j. We need to show that

Φjℓ+1

(
B̄j
)
=
{ d∑

i=1

γiΦjℓ+1v
j
i :

κj
i +

ϵ

d

e−Tpαjℓ

Γj
i

(qji − 1) ≤ γi < κj
i +

ϵ

d

e−Tpαjℓ

Γj
i

qji
}
⊂ Bj+1.

Take y ∈ B̄j and write it as y =
∑d

k=1 ykv
j
k and recall that κj

k +
ϵ
d
e−Tpαjℓ

Γj
i

(qjk −

1) ≤ yk ≤ κj
k + ϵ

d
e−Tpαjℓ

Γj
i

qjk for k ∈ {1, . . . , d} by equation (2.21). Now,

rewriting y =
∑d

i=1

(∑d
k=1 yk⟨v

j
k, v

j+1
i ⟩

)
vj+1
i , we can check that κj+1

i ≤(∑d
k=1 yk⟨v

j
k, v

j+1
i ⟩

)
≤ κj+1

i by the definitions of κj+1
i and κj+1

i . Thus,

Φjℓ+1y ∈ Bj+1 by equation (2.22). Since y ∈ B̄j was arbitrary, we have

that Φjℓ+1

(
B̄j
)
⊂ Bj+1.

Now, we need to find an estimate for #Cj+1
i . First, let (γj+1

1
, . . . , γj+1

d
) be

any argument of the minimum corresponding to the minimization used to

define κj+1
i , and let (γj+1

1 , . . . , γj+1
d ) be any argument of the maximum cor-

responding to the maximization used to define κj+1
i . Next, notice that

∣∣κj+1
i − κj+1

i

∣∣ = ∣∣∣ d∑
k=1

(
γj+1
k − γj+1

k

)
⟨vjk, v

j+1
i ⟩

∣∣∣ ≤ ϵ

d

e−Tpαℓ

Γj
i

d∑
k=1

∣∣⟨vjk, vj+1
i ⟩

∣∣ ,
11See equation (2.17) and the discussion below.
12To see this, look at equation (2.18) and compare with equation (2.21) with j = 1.
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because
∣∣∣γj+1

k − γj+1
k

∣∣∣ ≤ ϵ
d
e−Tpαjℓ

Γj
i

by the fact that13 κj
i +

ϵ
d
e−Tpαjℓ

Γj
i

(qji − 1) ≤

γi < κj
i +

ϵ
d
e−Tpαjℓ

Γj
i

qji . Thus, we arrive at the bound

#Cj+1
i ≤

⌈
eTpαℓ

Γj+1
i

Γj
i

d∑
k=1

∣∣⟨vjk, vj+1
i ⟩

∣∣⌉.
Further, by equations (2.24) and (2.25), we have the inequality

∣∣∣β̂j+1
i − βj+1

i

∣∣∣ ≤ ϵ

2d

e−Tpα(j+1)ℓ

Γj+1
i

.

Then, for jℓ+ 1 ≤ t ≤ (j + 1)ℓ we have that

||x̂(t)− ξ(x, t)|| =

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

(
β̂j+1
i − βj+1

i

)
Φtv

j+1
i

∣∣∣∣∣
∣∣∣∣∣

≤ ϵ

2d
e−Tpα(j+1)ℓ

∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

Φtv
j+1
i

Γj+1
i

∣∣∣∣∣
∣∣∣∣∣ ≤ ϵ

2
e−Tpαt,

where the last inequality comes from the facts that14
∣∣∣∣∣∣Φtv

j+1
i

Γj+1
i

∣∣∣∣∣∣ ≤ 1 and

jℓ+1 ≤ t ≤ (j+1)ℓ. Finally, notice that x ∈ B̄j+1 because
∑d

i=1 β
j+1
i vj+1

i ∈
B̄j+1 by the fact that Φjℓ+1B̄

j+1 ⊂ Bj+1 and equation (2.22).

The previous theorem gives us the following corollary.

Corollary 2.3.2. Let δ > 0, α ≥ 0, and ℓ ∈ N. If Vj = V for all j ∈ Z≥0,

where V is a normal basis for the Oseledets’ filtration, then

b ≤ 1

Tpℓ

d∑
i=1

log
⌈
eTp(λi+α)ℓ

⌉
if the system is known to be regular and

b ≤ 1

Tpℓ

d∑
i=1

log
⌈
eTp(λi+α+δ)ℓ

⌉
,

otherwise. Furthermore, b can be made as close as desired to hest(α,K) by

choosing ℓ large enough in case the system is known to be regular, or b can

13See equation (2.23) and the discussion below.
14This is implied by the defining equations (2.11) and (2.12).

32



be made as close as desired to
∑d

i=1 max {λi + α + δ, 0}, otherwise.

Proof. If V = {v1, . . . , vd} is a normal basis for the Oseledets’ filtration

of a tempered matrix sequence (Aj)j∈N and Vj = V , i.e. vji = vi for

j ∈ Z≥0 and every i ∈ {1, . . . , d}, then
∑d

k=1

∣∣⟨vjk, vj+1
i ⟩

∣∣ = 1, and λi =

lim supj→∞
1
j
log
(∥∥Φjv

j
i

∥∥) = lim supj→∞
1
j
log (∥Φjvi∥), i.e., λi’s will be the

Lyapunov exponents with multiplicity. We know that for every η > 0, there

exists N ∈ N such that ∀j ≥
⌈
N−1
ℓ

+ 1
⌉
and all i ∈ {1, . . . , d}, we have

that ∥Φtvi∥ ≤ eTp(λi+η)t ≤ eTp(λi+δ+η)t for all t ≥ N and this δ is the same

as the one used in the definition of Γj
i in the algorithm from Section 2.3.1.

Further, we know that for η > 0 sufficiently small, λi + δ + η < 0 for all

λi + δ < 0 with i ∈ {1, . . . , d}. Therefore, for j ≥
⌈
N−1
ℓ

+ 1
⌉
we have that

max{0,...,ℓ−1} {∥Φjℓ−kvi∥} ≤ max
{
eTp(λi+δ+η)jℓ, eTp(λi+δ+η)((j−1)ℓ+1)

}
.

Hence, as a consequence of our previous discussion and equation (2.12), if

λi + δ < 0, then we have that Γj
i = eTp(λi+δ)((j−1)ℓ+1) ∀j ≥

⌈
N−1
ℓ

+ 1
⌉
and all

i ∈ {1, . . . , d}, otherwise we have that Γj
i = eTp(λi+δ)jℓ ∀j ≥

⌈
N−1
ℓ

+ 1
⌉
and

all i ∈ {1, . . . , d}. Note that for λi + δ ≥ 0, we have eTp(λi+δ−η)jℓ ≤ Γj
i ≤

eTp(λi+δ+η)jℓ and that eTp(λi+δ−η)((j−1)ℓ+1) ≤ Γj
i ≤ eTp(λi+δ+η)((j−1)ℓ+1) if λi+δ <

0. Therefore, we have that
Γj+1
i

Γj
i

≤ eTp(λi+δ+2η)ℓ independently of the sign of

λi + δ. Thus, by Theorem 2.3.1, we have that #Cj+1
i ≤

⌈
eTp(λi+α+δ+2η)ℓ

⌉
,

∀j ≥
⌈
N−1
ℓ

+ 1
⌉
and every i ∈ {1, . . . , d}. We conclude, by showing that

the first
⌈
N−1
ℓ

+ 1
⌉
+ 1 terms of the sum in the definition of b go to zero

and that #Cj ≤
∏d

i=1

⌈
eTp(λi+α+δ+2η)ℓ

⌉
for all j ≥

⌈
N−1
ℓ

+ 1
⌉
, that15 b ≤

1
Tpℓ

∑d
i=1 log

⌈
eTp(λi+α+δ+2η)ℓ

⌉
. Also, because η can be arbitrarily small, we

have that b ≤ 1
Tpℓ

∑d
i=1 log

⌈
eTp(λi+α+δ)ℓ

⌉
. Finally, by choosing ℓ large enough,

b can get as close to
∑d

i=1max {λi + α + δ, 0} as desired.

Following analogous steps, we can prove a similar result for the case when the

system is known to be regular. To see this, note that, under the regularity as-

sumption, for every η > 0 there exists N ∈ N such that eTp(λi−η)t ≤ ∥Φtvi∥ ≤
eTp(λi+η)t for all t ≥ N . Then, we notice that for λi ≥ 0, we have eTp(λi−η)jℓ ≤
Γj
i ≤ eTp(λi+η)jℓ and that eTp(λi−η)((j−1)ℓ+1) ≤ Γj

i ≤ eTp(λi+η)((j−1)ℓ+1) if λi < 0.

Next, we get the inequality
Γj+1
i

Γj
i

≤ eTp(λi+2η)ℓ independently of the sign of

λi. Now, we replace this inequality in our previous argument to get that

b ≤ 1
Tpℓ

∑d
i=1 log

⌈
eTp(λi+α)ℓ

⌉
, and by choosing ℓ large enough, b can get as

15These steps are similar to those used in the proof of the entropy’s upper bound in
Theorem 2.2.6.
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close to
∑d

i=1 max {λi + α, 0} as desired. These results are summarized in

the next Corollary 2.3.2.

Remark 2.3.3. We note that Algorithm 2.3.1 reconstructs the state at the

end of the interval jℓ + 1 ≤ t ≤ (j + 1)ℓ for j ∈ Z≥0. By that, we mean

that we must wait until time (j+1)ℓ to build our estimate. We could, analo-

gously, build an estimate at the beginning of the interval by making a simple

modification: choose an arbitrary δ̄ > 0 and redefine, for all i ∈ {1, . . . , d}
and all j ∈ Z≥0, Γ

j
i as Γ

′j
i := ∥Φjℓv

j
i ∥eTpδ̄(j+1)ℓ, if the system is known to be

regular or Γ
′j
i := max{∥Φjℓv

j
i ∥, eTp(λi+δ)jℓ, eTp(λi+δ)((j−1)ℓ+1)eTpδ̄(j+1)ℓ}, other-

wise. This latter modification works because the property of temperedness

of the sequence implies that there exists some N ∈ N such that we have

∥Φtv
t
i∥ ≤ eTpδ̄(t−jℓ)∥Φjℓv

j
i ∥ ≤ eTpδ̄(j+1)ℓ∥Φjℓv

j
i ∥ for all t ≥ N . This latter fact,

by its turn, tells us that
∥Φtvti∥
Γ
′j
i

≤ 1, which is all that is needed for the proof

of Theorem 2.3.1 to hold. We also note that the quantity Γj
i only appears

in the fraction
Γj+1
i

Γj
i

that we use to compute our data-rate estimate. Thus,

the data-rate analysis presented in the proof of Corollary 2.3.2 holds with

the minor change that
Γ
′j+1
i

Γ
′j
i

≤ eTp(λi+2η+δ̄)ℓ for all i ∈ {1, . . . , d} and for all

j ≥ N , where N ∈ N. Since δ̄ > 0 is arbitrary, our claim in Corollary 2.3.2

remains unchanged.

2.3.2 Finding (Vj)j∈Z≥0
Online

In general, knowing a family of bases (Vj)j∈Z≥0
that makes our algorithm

operate with an average data-rate close to the estimation entropy, e.g., a

constant family equal to a normal bases for the Oseledets’ filtration, is impos-

sible. That happens because to compute the Lyapunov exponent, described

in Definition 2.2.4, we must calculate a limit superior, which requires us to

know the entire sequence (An)n∈N from the beginning. Analogously, we can-

not know the Oseledets’ filtration beforehand. We hope that Examples 2.2.1

and 2.2.3 should elucidate these latter points.

So, naturally, we ask ourselves if there is a way to construct the family

of bases online. The answer is affirmative when the system is regular. We

prove this fact in the next theorem, first presented in [20].

Theorem 2.3.4. Assume that (An)n∈N is regular. Let Qj :=
(
Φ⊤

j Φj

) 1
2j

for j ∈ Z≥0 and let its eigenvalues be eρi(j), where i ∈ {1, . . . , d} and
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eρ1(j) ≤ · · · ≤ eρd(j). Also, let Vj =
{
vj1, . . . , v

j
d

}
be an orthonormal basis that

diagonalizes Qj, with an order induced by the order on their corresponding

eigenvalues eρi(j). Then the average data-rate of the algorithm from Sec-

tion 2.3.1 is upper bounded by
∑d

i=1max
{
α + λi +

1
Tpℓ

, 0
}
, if the Lyapunov

exponents are simple, or
∑d

i=1 max

{
α + λi +

log(
√
d)+1

Tpℓ
, 0

}
, otherwise.

Proof. Our goal is to find an upper bound for #Cj
i for j large enough. For

that purpose, we will use the upper bound obtained in Theorem 2.3.1. So,

we need to find upper bounds or expressions for
∑d

k=1

∣∣⟨vjkvj+1
i ⟩

∣∣ and Γj+1
i

Γj
i

.

First, we show that λi = lim supj→∞
1
j
log
∥∥Φjv

j
i

∥∥, which appear in the defini-

tion of the algorithm from Section 2.3.1 for i ∈ {1, . . . , d}, are the Lyapunov
exponents with multiplicity, and that they are given by λi = limj→∞ ρi(j).

To see that, notice that
∥∥Qjv

j
i

∥∥ = eρi(j) and that

λi = lim sup
j→∞

1

j
log
∥∥Φjv

j
i

∥∥
= lim sup

j→∞

1

j
log
(
(vji )

⊤Φ⊤
j Φjv

j
i

)1/2
= lim sup

j→∞

1

j
log
(
(vji )

⊤Q2j
j vji

)1/2
= lim sup

j→∞
ρi(j)

where the second equality comes from the fact that the Euclidean norm and

the infinity norm are equivalent. Also, the last equality comes from the fact

that any basis that diagonalizes Qj also diagonalizes Q2j
j .

As a consequence of regularity, by the third bullet of Lemma 2.2.5, Qj has

a limit. Therefore, its eigenvalues eρi(j) have a limit as well. Hence, we

conclude that λi = limj→∞ ρi(j) because the limit on the right exists.

Second, denote the limit of Qj by Q := limj→∞ Qj. Because Lyapunov expo-

nents are simple, there exists N0 ∈ N such that for all j ≥ N0 the eigenvalues

of Qj are simple as well. Now, a symmetric matrix with simple eigenvalues

has a unique, up to a change of signs and subject to the order indicated in

the theorem statement, orthonormal basis that diagonalizes it. This implies

that for any η1 > 0, there exists N1 ∈ N such that
∑d

k=1

∣∣⟨vjk, vj+1
i ⟩

∣∣ ≤ 1+ η1

for all j ≥ N1 and i ∈ {1, . . . , d}. To see this, denote by {v1, . . . , vd} a

basis that diagonalizes Q. Now, we can change the signs of
{
vj1, . . . , v

j
d

}
if
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necessary, so that vji converges to vi, and notice that changing the sign does

not change the absolute value of the inner products mentioned above. Be-

cause these are orthonormal bases, there exists N1 ∈ N such that, for every

i ∈ {1, . . . , d}, we have |⟨vjk, v
j+1
i ⟩| ≤ η1/d if k ̸= i and |⟨vjk, v

j+1
i ⟩| ≤ 1+ η1/d

if k = i, and we proved this claim. Notice, however, that the inequalities∑d
k=1

∣∣⟨vjk, vj+1
i ⟩

∣∣ ≤ √
d for every i ∈ {1, . . . , d} always hold, even without

simplicity.

Third, again because of regularity, for η2 > 0 such that λi + η2 < 0 for all

λi < 0, but otherwise arbitrary16, there exists N2 ∈ N such that for all j ≥ N2

and all i ∈ {1, . . . , d} we have that λi − η2 ≤ ρi(j) ≤ λi + η2. Thus, Γj
i :=

maxk∈{0,...,ℓ−1}
∥∥Φjℓ−kv

j
i

∥∥ = maxk∈{0,...,ℓ−1}
∥∥eρi(jℓ−k)

∥∥. Then, we arrive at the

inequalities eTp(λi−η2)jℓ ≤ Γj
i ≤ eTp(λi+η2)jℓ, if λi ≥ 0, and eTp(λi−η2)((j−1)ℓ+1) ≤

Γj
i ≤ eTp(λi+η2)((j−1)ℓ+1), if λi < 0. Then,

Γj+1
i

Γj
i

≤ eTp(λi+2η2)ℓ for j ≥ N2 and

i ∈ {1, . . . , d}.
Now, recall the definition of average data-rate

b = lim sup
t→∞

1

Tptℓ

t∑
j=0

d∑
i=1

log
(
#Cj

i

)
.

Denote N := max {N1, N2}. So, for j ≥ N we have that

#Cj
i ≤

⌈
eTp(α+λi+2η2)ℓ(1 + η1)

⌉
.

Further, define M =
∑N−1

j=0

∑d
i=1 log

(
#Ci

j

)
. We can upper-bound the av-

erage data-rate by b ≤ lim supt→∞
1

Tptℓ

(
M +

∑t
k=N

∑d
i=1 log(gi)

)
, where

gi =
⌈
eTp(α+λi+2η2)ℓ(1 + η1)

⌉
.

Notice that log(⌈x⌉) ≤ max {log(x) + 1, 0}. To see that, we study two cases.

If x ≥ 1, then 2x ≥ x + 1 and log(2x) = log(2) + log(x) = 1 + log(x) ≥
log(x+ 1) ≥ log(⌈x⌉). If x < 1, then log(⌈x⌉) = 0. Therefore, we can derive

the upper bound

log
(⌈
eTp(α+λi+2η2)ℓ(1 + η1)

⌉)
≤ max {Tp(α + λi + 2η2)ℓ(1 + η1) + 1, 0} .

16Notice that η2 can be chosen to be as small as desired.
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Thus,

b ≤ lim sup
t→∞

1

Tptℓ

(
M + (t−N)

d∑
i=1

max
{
Tp(α + λi + 2η2)ℓ+

+ log(1 + η1) + 1, 0
})

and since M and N are constants, we conclude that

b ≤
d∑

i=1

max
{
α + λi + 2η2 +

log(1 + η1)

Tpℓ
+

1

Tpℓ
, 0
}
.

Since η1 > 0 and η2 > 0 can be chosen to be arbitrarily small, we have that

b ≤
∑d

i=1max
{
α + λi +

1
Tpℓ

, 0
}
.

Finally, if we drop the simplicity assumption, we could replace log(1 + η1) by

log
(√

d
)
and obtain b ≤

∑d
i=1 max

{
α + λi +

log(
√
d)+1

Tpℓ
, 0

}
, and, therefore,

in both cases, by choosing ℓ sufficiently large, the upper bound on b can be

made arbitrarily close to the estimation entropy hest(α,K) as given by the

last statement of Theorem 2.2.6.

Remark 2.3.5. Some of the results still hold even without regularity and

simplicity. Note that
∑d

k=1

∣∣⟨vjk, vj+1
i ⟩

∣∣ ≤
√
d always holds for every i ∈

{1, . . . , d}. Also, removing the regularity assumption, it is true that for

every η2 > 0, there exists N ∈ N such that
Γj+1
i

Γj
i

≤ eTp(λi+δ+2η2)ℓ for all for

j ≥ N , where δ > 0 is the same that appears in the definition of Γj
i in

algorithm 2.3.1. Further, these inequalities lead us to the conclusion that

#Cj
i ≤

⌈
eTp(α+λi+δ+2η2)ℓ

√
d
⌉
for j ≥ N and i ∈ {1, . . . , d}. We can use this

to upper-bound #Cj
i and, following the same steps as in the previous proof,

we conclude that b ≤
∑d

i=1 max

{
(α + λi + δ) +

log(
√
d)+1

Tpℓ
, 0

}
. Finally, note

that these λi’s aren’t the Lyapunov exponents with multiplicity. These λi’s

are the upper growth rates of the singular values of Qj as j goes to infinity

(see, e.g., Chapter 6 of [36]). It is well-known that these λi’s are smaller than

or equal to the Lyapunov exponents when we don’t have regularity. For that

reason, this algorithm might work at an average data-rate smaller than the

entropy’s upper bound obtained in Theorem 2.2.6. Understanding this gap

is the topic of future research.

We note that, without the regularity assumption, we need to have a priori
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knowledge either of the λi’s, or an upper bound to them. Both hypotheses

are unreasonable if we want to have a causal algorithm since the λ′
is depend

on the entire sequence
(
An

)
n∈N

. We also remark that the simplicity of the

Lyapunov exponents is a generic property, and we expect that most systems

will have it (see, e.g., Chapter 8 of [29]).

2.4 Sufficient Conditions for Regularity

In this section, we show that many pratical systems satisfy the Lyapunov

regularity condition. We first prove that sampling continuous-time regular

systems gives us a discrete-time regular system as well. After that, we deal

with probabilistic switched systems, i.e., systems for which the switching

signal is a random process in some sense. An interesting subclass is that of

ergodic Markov Jump Linear Systems (MJLS) (see, e.g., [40, 41]).

2.4.1 Sampled Continuous-time Regular Systems

We can define regularity of continuous-time systems analogously to the discrete-

time case. To do that, however, we need to adapt some other auxiliary no-

tions. We define the the Lyapunov exponent of system (2.1) as λc(v) :=

lim supt→∞
1
t
log ||Φ(t, 0)v||, where Φ(t, 0) is the state transition matrix of

system (2.1) (see, e.g., Chapter 3 of [36]). We further define the Oseledets’

filtration and Lyapunov exponents with multiplicities, λc
i with i ∈ {1, . . . , d},

analogously as the discrete-time Definition 2.2.6 by simply changing the defi-

nition of Lyapunov exponent used. Now, we are ready to define regularity for

continuous-time systems. System (2.1) is regular if limt→∞
1
t

∫ t

0
tr(Aσ(τ))dτ =∑d

i=1 λ
c
i .

Another instrumental concept we need to adapt to the continuous-time

case is tempredness. We say that system (2.1) is tempered if

lim
t→∞

1

t

∫ t+1

t

∥∥Aσ(τ)

∥∥ dτ = 0.

We note that there exists an analogous result to that of Lemma 2.2.5 is true

for the continuous-time case (see, e.g., Chapter 4 of [36]). More specifically,

we use in this subsection a consequence of the analogue of the second bullet
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in Lemma 2.2.5, i.e., for tempered and regular systems it holds that λc
i =

limt→∞
log(∥Φ(t,0)vi∥)

t
where {v1, . . . , vd} is a normal basis for the Oseledets’

filtration.

Our next proposition, first presented in [20], proves that if we sample a

continuous-time linear systems that is regular and tempered, then its corre-

sponding discrete-time system preserves those properties.

Proposition 2.4.1. Consider a continuous-time switched linear system as in

equation (2.1). Define xn := x(Tpn) and An := Φ(nTp, (n− 1)Tp) for n ∈ N,

where Φ(t, 0) is the fundamental matrix of (2.1), and Tp is the sampling time.

If the continuous-time system is tempered and regular, then the sequence

(An)n∈N is tempered and regular.

Proof. First, note that since λc(v) = limt→∞
1
t
log (∥Φ(t, 0)v∥), we can take

a subsequence tj = Tpj and conclude that λc(v) = limj→∞
1

Tpj
log (∥Φjv∥) =

λ(v)
Tp

. Thus, λc
i = λi

Tp
. Notice that, by Liouville’s formula, we have that

log
(
|det (Φ(t, 0))|

)
=
∫ t

0
tr(Aσ(τ))dτ . Finally, we conclude that

d∑
i=1

λi = Tp

d∑
i=1

λc
i

= Tp lim
t→∞

log
(
|det (Φ(t, 0))|

)
t

= lim
j→∞

log
(
|det (Φ(Tpj, 0))|

)
j

.

Therefore, the sampled system is regular. Now, for temperedness, notice

that ∥An∥ ≤ e
∫ nTp
(n−1)Tp

∥Aσ(τ)∥dτ by the Bellman-Grönwall lemma (see, e.g.,

Chapter 2 of [42]). Taking the logarithm on both sides we get that log(∥An∥)
nTp

≤
1

nTp

∫ nTp

(n−1)Tp

∥∥Aσ(τ)

∥∥ dτ and after a change of variables and using the fact that

temperedness implies limn→∞
1
n

∫ n

n−1

∥∥Aσ(τ)

∥∥ dτ = 0 we get that

lim sup
n→∞

log(∥An∥)
n

≤ 0.

For the lower bound, note that we can apply Bellman-Grönwall lemma to con-

clude that ∥An∥ ≤ e
∫ (n−1)Tp
nTp ∥Aσ(τ)∥dτ and get that lim supn→∞

log(∥A−1
n ∥)

n
≤ 0.

Finally, recall that ∥A−1
n ∥ ≥ ∥An∥−1, which implies that lim infn→∞

log(∥An∥)
n

≥
0, and we conclude that limn→∞

log(∥An∥)
n

= 0.
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2.4.2 Randomly Switched Systems

As mentioned at the beginning of this section, we focus our attention on

discrete-time randomly switched systems. Informally, in this case, our switch-

ing signal is a realization of a random process, which takes values over all

possible signals. We formalize that idea by introducing the concept of linear

cocycle later in this subsection. Our interest is to find conditions that ensure

that the realizations of such a process are regular with probability one. To

help us make these ideas more concrete, we present the next intuitive exam-

ple: let {B1, . . . , Bm} with Bi an invertible d × d matrix for i ∈ {1, . . . ,m}
be the set of modes. We assume that at each instant k ∈ N, the probability

that the mode Bi is active at a time is pi for each i ∈ [m]. Repeating this

process, we get a sequence (Bin)n∈N. Kolmogorov’s extension theorem (see,

e.g., Chapter III of [43]) tells us that we can assign probabilities to sets in

the space {(An)n∈N : An ∈ {B1, . . . , Bm}}. Thus, it seems natural to ask:

what is the probability of the set of regular sequences? The remainder of

this subsection is devoted to addressing this issue. We start by proving some

definitions.

Definition 2.4.1 (Linear Cocycle [29]). Let (M,B, µ) be a probability

space, f : M → M be a measure-preserving map. Let17 L : M → GL(R, d).

The linear cocycle defined by L over f is the transformation F : M ×
Rd → M × Rd with F (x, v) = (f(x), L(x)v). It follows that F n(x, v) =

(fn(x), L(fn(x)) · · ·L(x)v) for every n ≥ 1. Moreover, if f is invertible, then

so is F , with inverse F−1(x, v) = (f−1(x), (L(f−1(x)))−1v).

At first glance, it might seem counter-intuitive why we should define linear

cocycles to study switched systems. Nonetheless, there is a natural way to

model a linear switched system as a linear cocycle. This model allows us

to use powerful tools from dynamical systems to study the switched system

properties. To do that, we need to make a few definitions. For simplicity,

denote the set of modes as B := {B1, . . . , Bm} ⊂ GL (d,R). Then, define

M := BN, i.e., our sample space is the set of all possible sequences of modes.

Choose f : M → M to be the shift, i.e., f
(
(An)n∈N

)
= (An+1)n∈N. Fi-

nally, let L : M → GL(d,R) be the projection to the first coordinate, i.e.,

L
(
(An)n∈N

)
= A1. We see that F n((Aj)j∈N, v) = ((Aj+n)j∈N, An · · ·A1v)

17Recall that GL(R, d) is the set of d× d invertible matrices.
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for any sequence (Aj)j∈N ∈ M . Since An · · ·A1v = Φnv is the solution to

equation (2.2) with18 Ãk = An and initial condition v ∈ Rd, it seems nat-

ural to expect that such a linear cocycle should give us information about

the switched system. Now, our goal is to study properties of linear cocy-

cles. Indeed, Theorem 2.4.2 gives us that the set of regular realizations has

probability one.

Before we proceed, we recall some classical definitions: a cylinder of rank

k is a set of the form
[
(An)n∈N : A1 = Bi1 , . . . , Ak = Bik

]
, where ij ∈

{1, . . . ,m} and j ∈ {1, . . . , k}. Also, we define B as the smallest σ-algebra

that contains the cylinder sets of all ranks (see, e.g., Section 2 of [44]).

Theorem 2.4.2 (Oseledets [29,36,38]). Let (M,B, µ) be a probability space,

f : M → M be a measure-preserving map. Let L : M → GL(R, d) be such

that19 log+ ||L|| ∈ L1(µ) . Also consider the linear cocycle defined by L over

f . Further, denote Φn(x) = L(fn(x)) · · ·L(x).
Then, for µ-almost every x ∈ M , there are k(x) positive integers, λk(x) >

· · · > λ1(x), and a filtration {0} = E1
x ⊊ · · · ⊊ Ek

x = Rd such that ∀i =

1, . . . , k(x):

• k(f(x)) = k(x) and λi(f(x)) = λi(x) and L(x)(Ei
x) = Ei

f(x);

• limn→∞
1
n
log ||Φn(x)v|| = λi(x) for all v ∈ Ei+1

x \ Ei
x, with E1

x = {0},

• The limn→∞
(
Φ⊤

n (x)Φn(x)
) 1

2n exists.

Furthermore, if f is ergodic, the multiplicities k(x) of the Lyapunov ex-

ponents λi(x) are constant and, consequently, so are the dimension of the

subspaces Ei
x. Also, in the ergodic case λi(x) = λi is constant a.e..

Since the third bullets of Theorem 2.4.2 and Lemma 2.2.5 are the same,

we see that the set C, which we call the set of regular realizations, is a set

of regular sequences. The fact that C is measurable and has µ(C) = 1 tells

us that, with probability one, the realization of our random process will be

regular. This latter fact is true for any shift-invariant probability measure

over B. Note, however, that different measures give us distinct sets C.

The simplest case we can analyze with the previous theorem is that of

periodically switched systems, which we do in the next corollary. We remark

that this and the next corollary were presented first in [20].

18See Section 2.2 for a discussion about the indices.
19Here we use the notation log+(x) = max

{
log(x), 0

}
.
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Corollary 2.4.3 (Periodically Switched Systems). Let (An)n∈N ⊂ BN be

such that An+T = An for some T ∈ N and every n ∈ N. Then, this sequence

is regular.

Proof. Let N ∈ B, x = (An)n∈N, and f(x) = (An+1)n∈N. Define the measure

µ(N ) = 1
T

∑T−1
i=0 δf i(x)(N ), where δx is a Dirac measure, i.e. δx(N ) = 1 if

x ∈ N and δx(N ) = 0, otherwise. This measure is trivially forward invariant

under the shift and, because ∥An∥ < ∞, we have that log+ ∥L∥ ∈ L1(µ).

Therefore, we can apply Oseledets’ Theorem and conclude that there exists

C ∈ B with µ(C) = 1 such that all of its realizations are regular. Notice

that K := ∪i≥0f
i(x) = ∪T−1

i=0 f
i(x) ∈ B and that µ(K) = 1 by construction.

Finally, notice that C ∩ K = K. To see this, notice that K is a finite

set, and µ gives the same measure for each point of K, more specifically

µ(f i(x)) = 1
n
for i ∈

{
0, . . . , T − 1

}
. Hence, if #C ∩ K < #K, we would

have that 1 = µ(C ∩ K) ≤ µ(K) − 1
n
, which is a contradiction. Therefore,

the sequence (An)n∈N is regular. Also, notice that the Lyapunov exponents

with multiplicity are constant on K.

A more interesting class of systems with several practical applications

is that of Markov Jump Linear Systems. Before we discuss that case, we

must recall some definitions regarding discrete-time Markov Chains (see, e.g.,

Chapter 1 of [45]). Let P = (pij) be the m × m transition probability ma-

trix of a discrete-time Markov chain. A stationary distribution of such chain

π∗ = (π1, . . . , πm), is defined as a solution of π∗⊤ = Pπ∗⊤, where
∑m

i=1 π
∗
i = 1

and π∗
i ≥ 0 for all i ∈ {1, . . . ,m}. Recall that if a Markov chain is irreducible

and positively recurrent, it has a unique stationary distribution. Now we can

define a measure on the cylinder sets by choosing a vector π0 = (π0
1, . . . , π

0
m),

with π0
i ≥ 0 for i ∈ {1, . . . ,m} and

∑m
i=1 π

0
i = 1, and using our transition

probability matrix P . To do that, we define the value of the measure µ on

cylinders of rank k for each k ∈ N in the following manner:

µ(Nk) = π0
i1
pi1i2pi2i3 · · · pik−1ik ,

where Nk =
[
(An)n∈N ∈ BN : A1 = Bi1 , . . . , Ak = Bik

]
is an arbitrary

cylinder of rank k and k is an arbitrary natural number. As mentioned

earlier in this subsection, Kolmogorov extension theorem tells us that the

measure of the cylinders defines the measure in the entire sample space (see,
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e.g., Section 24 of [44], or Chapter III of [43]). We call such measure the

probability measure induced by π0 and P .

It is worth noticing that the measure of the cylinder Nk equals the prob-

ability of seeing the event (Bi1 , . . . , Bik) given an initial distribution π0 on

the modes if the chain is irreducible and positive recurrent. We can infor-

mally rephrase the last sentences as follows: the measure of a cylinder is

the probability of seeing a sequence given an initial distribution. Finally, we

remark that we can choose π0 = π∗, the unique stationary distribution of the

irreducible and positively recurrent chain, which tells us that the probability

of being in mode i is constant for all times since π∗⊤ = Pπ∗⊤.

Corollary 2.4.4 (Markov Jump Linear Systems). Let P = (pij) be them×m

transition matrix of an irreducible and aperiodic discrete-time discrete-state

Markov chain, that represents the switching of the modes Bi ∈ B. Let

π∗⊤ ∈ Rd be the Markov chain’s stationary distribution. Let µ∗ : B → [0, 1]

be the probability measure induced by π∗ and P . Then, the set of regular

realizations with respect to µ∗ has full probability.

Proof. Let Nk =
{
(An+1)n∈N ∈ BN : A1 = Bi1 , . . . , Ak = Bik

}
be a cylinder

of rank k and let f((An)n∈N) = (An+1)n∈N be the shift. Notice that the prob-

ability measure induced by π∗ is ergodic under the shift f , see e.g Chapter

1 of [46] or Section 24 of [44]. Because # {B1, . . . , Bm} = m, we have that

log+ ∥L∥ ∈ L1(µ∗). Therefore, we can apply Oseledets’ Theorem and get

that the set of regular realizations C of a Markov Jump Linear System with

an irreducible and aperiodic probability transition matrix has probability 1

under µ. Furthermore, because of the ergodicity, the Lyapunov exponents

with multiplicity are constant, i.e. have the same value for any realization,

in the set C.

Remark 2.4.5. Assume that our initial distribution π0 on the modes is

arbitrary, i.e., the distribution might differ from π∗. Since the distribution

π0P n converges to the stationary distribution π∗ as n goes to infinity, we

expect the previous result to still hold. Our goal is to prove that the measure

µn induced by πn = π0P n and P converges to the stationary measure µ∗

induced by π∗ and P on the set of regular realizations C. We prove that µn

converges to µ∗ in the total variation distance, i.e., in the distance defined

by ∥µn − µ∗∥ = supB∈B ∥µn(B)− µ∗(B)∥. Noticing that for each cylinder of
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the form Nk =
[
(An)n∈N ∈ BN : A1 = Bi1 , . . . , Ak = Bik

]
of rank k, we have

∥µn(Nk)− µ∗(Nk)∥ =
∥∥πn

i1
− π∗

i1

∥∥ pi1i2 · · · pik−1ik ≤
∥∥πn

i1
− π∗

i1

∥∥ .
Therefore, as n goes to infinity, µn converges to µ∗ on the cylinders and, con-

sequently, on any measurable set. Thus, the fact that limn→∞ ∥µn − µ∗∥ = 0.

In particular, µn(C) → 1 leads to the conclusion that, with probability 1,

our realizations will be regular.

Corollary 2.4.4 answers the question we posed at the beginning of this sub-

section, i.e., the set of regular sequences (Bin)n∈N has probability 1. Now, we

revisit Example 2.1.1 and analyze the average data-rate needed for Algorithm

2.3.1 to work in that case.

Example 2.4.6 (Example 2.1.1 revisited.). Corollary 2.4.4 tells us that, with

probability one, the realizations of the system presented in Example 2.1.1 are

regular. Thus, we conclude that the upper bound (2.10), in Example 2.2.7,

is an equality. Explicitly, with probability one, the estimation entropy of the

system is given by

hest(α,K) = max

{
1

2
log(0.99) + α, 0

}
+max {α, 0} nats/sample

or, equivalently,

hest(α,K) = log2(e)
(
max

{
1

2
log(0.99) + α, 0

}
+max {α, 0}

)
bits/sample.

Hence, we can use the algorithm from Section 2.3 with the choice of bases

from Subsection 2.3.2 for a randomly chosen realization of our system. This

is what we do in the following simulation. The parameters chosen were

α = 0.05, ϵ = 0.01, and the time horizon for our simulation was 140 time

units. Further, K = [0.5, 1.5] × [1.5, 2.5], x(0) = (1.3, 2.207)⊤. Notice that,

for this α, we get hest(0.05, K) ≈ 0.137 bits/sample.

In Figure 2.1, we see the simulation results for our algorithm using different

block lengths. We depict the result corresponding to the block length ℓ = 1

in blue, to ℓ = 3 in red, and to ℓ = 5 in yellow. We can see that the error

is upper bounded by the purple curve ϵe−αt/2 for all values of ℓ. Further,

the empirical average data-rate, i.e., 1
tℓ

∑t
j=1 log

(
Cj
i

)
, is portrayed in Figure
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2.2, which shows that the data-rate decreases with the block length, as the

theory we developed previously predicted. Note, however, that the average

data-rate obtained from simulation is much higher than the upper bound

derived in Theorem 2.3.4. The reason why that is the case is related to

the fact that the results from Theorem 2.3.4 are only asymptotic. For now,

we conjecture that this might be related to the rate of convergence of the

subadditive ergodic theorem for this class of problems. However, this is a

topic for future research. We remark that these figures appeared in [20].
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Figure 2.1: Evolution of error for several block lengths.

0 20 40 60 80 100 120 140

0.5

1

1.5

2

2.5

3

A
ve
ra
ge

d
at
a-
ra
te

(b
it
s/
u
n
it
of

ti
m
e)

1
tℓ

∑
t

j=1 log2(#Cj)

ℓ = 1
ℓ = 3
ℓ = 5
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2.5 Conclusion

In this chapter, we studied how the concepts of Lyapunov exponents relate

to the estimation entropy of a switched linear system. Also, we discussed

how the geometric concept of Oseledets’ filtration is associated with those

notions. Further, we addressed the problem of finding a quantization scheme

that operates close to the minimum average data-rate for regular switched

linear systems. Furthermore, we showed how to adapt our algorithm to work

close to the optimal data rate, even if the underlying system is not regular.

Additionally, we showed that regular switches occur in several practical con-

ditions including periodic switching and almost all switches that come from

Markov Jump Linear Systems. Finally, we presented simulation results.
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CHAPTER 3

CONTROLLABILITY FOR LINEAR
TIME-VARYING SYSTEMS WITH A

FINITE DATA-RATE

3.1 Chapter Overview

In the present chapter, we study controllability of linear time-varying sys-

tems that operates with finite data-rate. The motivation behind this study

is that many practical systems today use computers or other digital circuits

in their controller implementation. Digital circuits, by their turn, operate

with sampled and quantized data. Moreover, since those circuits only have a

finite number of possible output values for any given clock cycle, they must

work with finite data-rate. We saw earlier in Chapter 2 that the data-rate

available to our system limits what estimation problems we can solve. Sim-

ilarly, the data-rate we can use limits what control problems we can solve.

Interestingly, finding fundamental limitations in control systems has been

a prolific endeavor in providing new insights that helped develop new con-

troller design techniques [47]. For example, Kalman introduced the concept

of controllability in the paper [48] to answer what plant dynamics’ intrinsic

properties impede us from designing controllers with determined properties

for it. In that same paper, he showed how to construct a controller for a

controllable plant that sends the system’s state to zero as fast as possible,

extending the work [49].

In light of this discussion, we ask a natural question: what new constraints

arise from the fact that our controller must operate with a finite data-rate?

The so-called data-rate theorems [4], which provide the minimum data-rates

for stabilizing plants, give part of the answer. Indeed, the control over com-

munication networks community devoted much of its attention to studying

such theorems [8,9,12] since communication channels restrict the data-rate of

the control laws used. Nonetheless, these theorems are not the only restric-

tions to finite data-rate control. Indeed, in this chapter, we prove that, in
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general, a finite data-rate controller can only make the system’s state norm

decay exponentially at the fastest. This fact shows us that the usual con-

cept of controllability, as defined in the reference [48], is unfit for studying

the problem of making the state go to the origin as quickly as possible when

data-rate constraints are present. Thus, this motivates us to introduce a new

controllability notion suited to this case. We do so with the help of concepts

from the paper [11]. In that article, the author introduced a concept of stabi-

lization with a finite data-rate, which, loosely speaking, is the ability to drive

the state of a system to zero with a prescribed exponential rate of decay. In

our work, we strengthen that notion to allow for arbitrary exponential rates

of decay. This latter concept is compatible with the idea of being able to

drive the state to zero as fast as possible, as we argue later.

We take this opportunity to note that the literature on conditions for

stabilization with quantized control of linear time-invariant systems is ex-

tensive, e.g., the references [5, 11, 50]. Also, there exists a corresponding

literature for linear time-varying (LTV) systems focused on switched linear

systems [24, 51, 52]. However, most results in this literature deal with suffi-

cient conditions for stabilizing switched linear systems, but the same result

for general LTV systems is lacking. Furthermore, even in the switched case,

necessary conditions for stabilization with quantized controls are missing. In

view of this, another goal of this chapter is to present a necessary condition

and a sufficient condition for controllability with quantized controls and fi-

nite data-rate for LTV systems. With this, we hope to lessen the gap on

the literature we mentioned above. We also note that the results from this

chapter can be found in a slightly different form in the work [53].

The structure of the present chapter is as follows: first, in Section 3.1, we

introduce the motivation and notations. Next, in Section 3.2, we describe the

problem and needed concepts. Further, we introduce the concept of control-

lability with finite data-rate and discuss why this concept is natural. Then,

in Section 3.3, we state some necessary results, recall the concept of complete

controllability, and define persistent complete controllability. After that, in

Subsection 3.3.1, we prove that persistent complete controllability and an-

other condition, the exponential energy-growth condition, are sufficient for

an LTV system to be controllable in the sense we defined. Furthermore, in

Subsection 3.3.2, we prove that complete controllability is a necessary con-

dition for an LTV system to be controllable with finite data-rate. Finally,
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in Section 3.4, we conclude the chapter and present some future research

directions.

Notations : We denote by Z>0 (Z≥0) the set of the positive (nonnegative)

integers. We denote by R (R>a) the set of real numbers (larger than a ∈ R).

Given n ∈ Z>0, we denote [n] := {1, . . . , n}. Given a set S, we denote by

#S its cardinality. Let Md be the set of d× d real matrices. We denote the

transpose of an element A ∈ Md by A′. For every x = (x1, · · · , xd) ∈ Rd,

we denote by |x| :=
(∑d

i=1 x
2
i

)1/2
the Euclidean norm. Also, if A is a d × d

real matrix we denote by ∥A∥ := max{|Ax| : |x| = 1, x ∈ Rd} the induced

norm. For a matrix A ∈ Md, we denote by N (A) its null space. We de-

note by L∞
loc([t0,∞),Rm) the set of all integrable locally essentially bounded

functions from [t0,∞) to Rm where t0 ∈ R≥0 and m ∈ Z>0, i.e., the set of

integrable functions u(·) such that for every compact set L ⊂ [t0,∞), we

have that u(L) ⊂ Rm is bounded. Also, we denote by L2([a, b],Rm) the set of

square-integrable functions on the interval [a, b] ⊂ R with image on Rm. Let

u : A → B and let C ⊂ A, then we denote by u|C : C → B the restriction

of the function u to the subset C of the domain A. Finally, we denote by

B(x, r) ⊂ Rd the open ball of radius r ∈ R>0 and center x ∈ Rd.

3.2 Preliminaries

In this section, we motivate the study of controllability of linear time-varying

systems with finite data-rate. We first state some necessary definitions. Next,

we provide a definition of controllability that makes sense when our controller

operates with a finite data-rate. Finally, we motivate the study of our con-

trollability notion through an example.

Our primary goal is to study the controllability with quantized controls

and finite data-rate of systems described by equation

ẋ(t) = A(t)x(t) +B(t)u(t), (3.1)

where the initial state is given by x(t0) = x0 ∈ K ⊂ Rd with K compact

with nonempty interior, the initial time is given by t0 ∈ R≥0, time is such

that t ∈ R≥t0 , A(t) is a d × d real matrix, B(t) is a d ×m real matrix, and
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u(t) ∈ Rm. Also, we assume that the functions A(·) and B(·) are bounded1

and piecewise-continuous on R≥t0 . Further, we define by Φ(t, τ) for t ∈ R

and τ ∈ R the state-transition matrix associated with the unforced response

of system (3.1). Furthermore, we assume that u(·) ∈ L∞
loc([t0,∞),Rm).

Now, our objective is to define controllability with finite data-rate. Our

next definition borrows concepts and definitions from the article [11]. We

name some sets and properties not named in [11] to improve readability in

later discussions. However, these concepts were first introduced in [11].

Definition 3.2.1. We say that system (3.1) satisfies the exponential decay

condition with rate µ ∈ R>0, with M ∈ R>0, and ϵ ∈ R>0 if for each x0 ∈
K ⊂ Rd there exists u(·) ∈ L∞

loc([t0,∞),Rm) such that

|x(t)| ≤
(
M |x0|+ ϵ

)
e−µ(t−t0) (3.2)

for all t ∈ R≥t0 . For given µ ∈ R>0, M ∈ R>0, ϵ ∈ R>0, and K ⊂ Rd as

above, we call the set R(ϵ,M,K, µ) ⊂ L∞
loc([t0,∞),Rm) a stabilizing control

set of system (3.1) if for every x0 ∈ K, there exists a control function u(·) ∈
R(ϵ,M,K, µ) such that (3.2) holds. Furthermore, we denote by

RT (ϵ,M,K, µ) := {u|[t0,T ](·) ∈ L∞
loc([t0, T ],R

m) : u(·) ∈ R(ϵ,M,K, µ)}

a set of restrictions of stabilizing controls, where T > t0 is arbitrary. More-

over, we define the data-rate associated with system (3.1) in the following

manner. First, given a stabilizing control set R(ϵ,M,K, µ), we define the

quantity

b(R(ϵ,M,K, µ)) := lim sup
T→∞

1

T
log(#RT (ϵ,M,K, µ)).

Next, we define the data-rate as2

b(M,µ) := lim
ϵ→0

inf{b(R(ϵ,M,K, µ)) : R(ϵ,M,K, µ)

is a stabilizing control set of (3.1)}.

Finally, we say that system (3.1) can be stabilized with finite data-rate with

1That means that A(R≥t0) and B(R≥t0) are bounded subsets of Rd and Rm, respectively.
2Note that b(M,µ) also depends on the set of initial conditions K. We drop that

dependence to make the notation simpler.
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M ∈ R≥0 and µ ∈ R≥0 if b(M,µ) < ∞.

We analyze this definition thoroughly, including the role of ϵ, in the next

Chapter. To continue our discussion, we recall the usual definition of con-

trollability for LTV systems. See, e.g., Chapter 9 of [54].

Definition 3.2.2. We say that system (3.1) is controllable in the usual sense

on [t0, T ], where T ≥ t0, if for every initial condition x(t0) = x0 ∈ Rd there

exists a function u : [t0, T ] → Rm such that x(T ) = 0.

Now, we are ready to define controllability with finite data-rate.

Definition 3.2.3. We say that system (3.1) is controllable with finite data-

rate if for every µ ∈ R>0, there exists M ∈ R≥0 such that system (3.1) is

stabilizable with finite data-rate b(M,µ) < ∞.

We remark that the previous definition was first stated in the author’s

paper [53]. We further note that this definition differs from the one given

in reference [11] for stabilization with finite data-rate, in the sense that, in

our case, µ ∈ R>0 is arbitrary. The reader might wonder why we need a

new definition of controllability for the case where the data-rate is finite. We

answer this question in Section 4.2 from Chapter 4 once we have more tools.

Before we continue our discussion, we recall the definition of controllability

Gramian.

Definition 3.2.4 (Chapter 6 of [55]). Consider the system given by Equation

(3.1). We define the controllability Gramian from t0 to t of system (3.1) as

W (t, t0) :=
∫ t

t0
Φ(t, τ)B(τ)B′(τ)Φ′(t, τ)dτ.

We naturally ask if the usual controllability condition for LTV systems,

based on the invertibility of the controllability Gramian, implies that system

(3.1) is controllable with finite data-rate. The following Example 3.2.1 shows

that the answer is negative.

Example 3.2.1. Consider the LTV system (3.1) in the specific case when

A(t) = Id and B(t) = (1, 0) for 0 < t < 1, and A(t) = Id and B(t) = (0, 1) for

t ≥ 1. Further, we assume that the initial time is t0 = 0. We readily see that

the Gramian W (2, 0) is invertible, implying that system (3.1) is controllable

in the usual sense. However, our results in Section 3.3 show that this system

is not controllable with finite data-rate.
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The previous example motivates the development of our theory. In the

next section, we provide necessary and sufficient conditions for system (3.1)

to be controllable with finite data-rate.

3.3 Controllability with Finite Data-Rate

In this section, we present this chapter’s main contribution. We state and

prove a sufficient and a necessary condition for LTV systems to be control-

lable with finite data-rate. To do that, we first introduce some new definitions

and technical results.

Our first goal is to present definitions that allow us to characterize con-

trollability with finite data-rate. Definition 3.3.1 plays an instrumental role

in our theory. We use it to present our main results, namely Theorems 3.3.5

and 3.3.6. We note that it is easier to check if a system satisfies the following

conditions than to check if a system is controllable with a finite data-rate

directly.

Definition 3.3.1. We say that system (3.1) is completely controllable if there

exists an increasing sequence (sn)n∈Z≥0
with s0 = t0 and sn → ∞ such that

W (sn+1, sn) is invertible for every n ∈ Z≥0. If the sequence (sn)n∈Z≥0
also

satisfies3 lim supn→∞
sn+1

sn
< ∞, then we say that system (3.1) is persistently

completely controllable.

Remark 3.3.1. We take this opportunity to make some remarks. We note

that Kalman defined complete controllability in the paper [56] differently

from the way we did it in Definition 3.3.1. We prove the equivalence of

both definitions in the Appendix. We mention, however, that the concept

of persistent complete controllability is new, and the author first stated it

in [53]. We further notice that there are necessary conditions and sufficient

conditions for the complete controllability of LTV systems in the literature.

For instance, the article [57] provides some conditions4 for an LTV system to

be completely controllable when the matrices A(t) and B(t) are differentiable

3This is equivalent to the statement: there exists M ∈ R>0 such that sn+1

sn
≤ M for all

n ∈ Z≥0.
4We note that complete controllability and complete controllability on an interval are

distinct notions.
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functions of time. Finally, the quantity sn+1−sn does not need to be bounded

in either statement from Definition 3.3.1.

Now, we state some technical results. The proofs of all of the lemmas are

in the Appendix. We start stating Lemma 3.3.2, which will be useful in the

proof of Theorem 3.3.5.

Lemma 3.3.2. Let system (3.1) be persistently completely controllable.

Then, there exists a sequence (sn)n∈Z≥0
such that W (sn+1, sn) is invertible

for every n ∈ Z≥0, that lim supn→∞
sn+1

sn
< ∞, and that lim supn→∞

n
sn

< ∞.

Before we proceed, we introduce some notation: let λt := sup{1
s
log(∥Φ(s, t0)∥) :

t ≥ s ≥ t0}, ξ := sup{∥A(t)∥ : t ≥ t0}, and λ̄ := lim supt→∞ λt. Now, we

state Lemma 3.3.3, which collects some known results about the state tran-

sition matrix (see, e.g., Chapter 4 of [54]).

Lemma 3.3.3. Consider Equation (3.1) and let ξ < ∞. Then, e−ξ(t−t0) ≤
|Φ(t, t0)v| ≤ eξ(t−t0) for all t ≥ t0 and all v ∈ Rd with |v| = 1. In particular,

it is also true that ∥Φ(t, t0)∥ ≤ eξ(t−t0).

Since ξ < ∞, Lemma 3.3.3 tells us that both λ̄ and λt are finite. Our next

lemma gives a bound for ∥W−1(sn, sn+1)∥ as n goes to infinity. We use this

fact to prove Theorem 3.3.5.

Lemma 3.3.4. For every sequence (sn)n∈Z≥0
with sn ↗ ∞, the Gramian

W (sn+1, sn) associated with system (3.1) satisfies

∥W (sn+1, sn)∥ ≤ sup{∥B(t)∥2 : t ≥ t0}
e2ξ(sn+1−sn) − 1

2ξ
.

Lemma 3.3.4 shows that the norm of the Gramian can only grow exponen-

tially fast with n when A(·) and B(·) are bounded matrices.

Definition 3.3.2. Let (sn)n∈Z≥0
be an increasing sequence such that

lim sup
n→∞

sn = ∞.

Then, we say that system (3.1) satisfies the exponential energy-growth con-

dition if there exists θ ∈ R≥0 and N ∈ R>0 such that ∥W−1(sn+1, sn)∥ ≤
Neθsn+1 .
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The reader might be asking what is the rationale behind this property’s

name. To understand the idea behind it, we need to remember a result related

to the minimum energy control of LTV systems on time intervals of the form

[sn, sn+1]. We recall the classical result (see, e.g., Theorem 1 in Chapter

22 from [42]) that the minimum cost for any control that drives the state

x(sn) at time sn to the origin at time sn+1 in the L2([sn, sn+1],Rm) sense,

is given by x′(sn)W
−1(sn, sn+1)x(sn). Therefore, the exponential energy-

growth condition tells us that the energy needed to drive a given state to

zero over time intervals of the form [sn, sn+1] cannot grow faster than an

exponential as n grows to infinity. We are finally ready to state and prove

our necessary and sufficient conditions for system (3.1) to be controllable

with finite data-rate.

3.3.1 Sufficient Condition

In this subsection, we state and prove Theorem 3.3.5. This result is our

sufficient condition for system (3.1) to be controllable with finite data-rate.

We note that this theorem gives us a characterization of controllability with

finite data-rate.

Theorem 3.3.5. System (3.1) is controllable with finite data-rate if it is per-

sistently completely controllable and satisfies the exponential energy-growth

condition.

Proof. Let {e1, · · · , ed} ⊂ Rd be the canonical basis of Rd. Pick an arbitrary

ϵ̃ ∈ R>0 and an arbitrary µ ∈ R>0. Also, let (sn)n∈Z≥0
be a sequence that

satisfies the conditions given in Definition 3.3.1 for system (3.1) to be persis-

tently completely controllable. By Lemma 3.3.2, without loss of generality,

we assume that lim supn→∞
n
sn

= Q < ∞. Further, denote by α := 4ξ+ θ+µ

for simplicity. Finally, let C = eα(s1−t0), ϵ =
√
d(2C+1)N sup{∥B(t)∥2:t≥t0}

2ξ
ϵ̃, and

M =
√
dCN sup{∥B(t)∥2:t≥t0}

ξ
.

Our proof can be divided into four parts: first, we construct a set of controls

U (ϵ,M,K, µ), where each control corresponds to an initial condition in K.

Second, we prove by induction that for every initial condition x ∈ K, there

exists a control in U (ϵ,M,K, µ) such that |x(sn)| ≤ C
(
|x(t0)|+ ϵ̃)e−α(sn+1−t0)

for all n ∈ Z≥0. Third, we prove for any n ∈ Z≥0 and any t ∈ [sn, sn+1) we

have a bound |x(t)| ≤
(
M |x(t0)|+ϵ

)
e−µ(t−t0), i.e., we show that U (ϵ,M,K, µ)
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is a stabilizing control set. Finally, we show that the data-rate b(M,µ) is

finite for every possible µ ∈ R>0 and our choice of M ∈ R>0 by proving

an upper bound for b(U (ϵ,M,K, µ)) = lim supT→∞
1
T
log(#UT (ϵ,M,K, µ))

that is constant for every ϵ ∈ R>0.

Part 1: Consider the following recursive definitions:

For n ≥ 0 and for each x ∈ K, we define.

• For n = 0, define the constant function

κ0
i (x) := min{⟨x, ei⟩ : x ∈ K}

and

κ0
i (x) := max{⟨x, ei⟩ : x ∈ K}

for every i ∈ [d]. For n ≥ 1, define the piecewise-constant functions

κn
i (x) := κn−1

i (x) + Γn−1
i (qn−1

i (x)− 1)

and

κn
i (x) := κn−1

i (x) + Γn−1
i qn−1

i (x)

for every i ∈ [d];

• Define the constant Γn
i := ϵ̃

d
e−(λsn+1+α)sn+1 and the positive integer

Cn
i :=

{
1, . . . ,

⌈
κn
i (x)−κn

i (x)

Γn
i

⌉}
for each i ∈

{
1, . . . , d

}
and each n ∈ Z>0.

Note that, by the defining equations of κn
i (x) and κn

i (x), κ
n
i (x)−κn

i (x) =

Γn−1
i . Thus,

κn
i (x)−κn

i (x)

Γn
i

= e(λ
sn+1+α)sn+1−(λsn+α)sn for every i ∈ [d], every

x ∈ K, and every n ∈ Z≥0.

• Define the quantized value of the i−th projection of the initial state

into the vector space span{ei} at time sn by

qni (x) := {l ∈ Cn
i : κn

i (x) + Γn
i (l − 1) ≤ ⟨x, ei⟩ < κn

i (x) + Γn
i l}

for each i ∈ [d];

• Define the quantized value of the i−th projection of the initial state

into the vector space span{ei} at time sn by

β̂n
i (x) := κn

i (x) + Γn
i (q

n
i (x)− 1/2)
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for each i ∈ [d];

• Define the i-th projection of the initial state into the vector space

span{ei} at time sn by

βn
i (x) := ⟨x, ei⟩;

• With the notation
∑b

i=1 ci = 0 for any b ∈ Z such that b < 1. Then,

define the quantity5

x̂(sn) :=
d∑

i=1

β̂n
i (x)Φ(sn, s0)ei+

+
n−1∑
k=0

∫ sk+1

sk

Φ(sn, s)B(s)u(q0(x), · · · , qk(x), s)ds;

• Define the control law in the interval [sn, sn+1) corresponding to the

initial state x by

u(q0(x), · · · , qn(x), t) := −B′(t)Φ′(sn+1, t)W
−1(sn+1, sn)Φ(sn+1, sn)x̂(sn)

for t ∈ [sn, sn+1) where qn(x) := (qn1 (x), · · · , qnd (x)). Further define

v(x, t) := u(q0(x), · · · , qn−1(x), t), where n is the smallest integer such

that t < sn. Finally, define by U (ϵ,M,K, µ) the set of all such v(x, ·).
Also, denote by UT (ϵ,M,K, µ) the set of restrictions of controls in

U (ϵ,M,K, µ) from time t0 to T . More explicitly UT (ϵ,M,K, µ) :=

{v|[t0,T )(x, ·) ∈ L∞
loc([t0,∞),Rm) : v(x, ·) ∈ U (ϵ,M,K, µ)}.

- Part 2:

Step 0: Trivially, we have that |x(t0)| ≤ |x(t0)|+ ϵ̃ = C(|x(t0)|+ ϵ̃)e−α(s1−t0)

and we proved the base case, i.e., |x(sn)| ≤ C(|x(t0)| + ϵ̃)e−α(sn+1−t0) for

C ∈ R>1 and for n = 0.

Step n+1: Recall that for each x ∈ K and for t ∈ [sn, sn+1) the control law

we defined in the first part is given by

u(q0(x), · · · , qn(x), t) = −B′(t)Φ′(sn+1, t)W
−1(sn+1, sn)Φ(sn+1, sn)x̂(sn)

5This can be seen as an state estimate at time sn.
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where

x̂(sn) =
d∑

i=1

β̂
sn+1

i (x)Φ(sn, s0)ei+

+
n−1∑
k=0

∫ sk+1

sk

Φ(sn, s)B(s)u(q0(x), · · · , qk−1(x), s)ds.

Now, writing down the variation of parameters formula at time sn+1 we get

that

x(sn+1) = Φ(sn+1, sn)x(sn)−
∫ sn+1

sn

Φ(sn+1, τ)B(τ)B′(τ)Φ′(sn+1, τ)dτ×

×W−1(sn+1, sn)Φ(sn+1, sn)x̂(sn)

from which we conclude that

x(sn+1) = Φ(sn+1, sn)
(
x(sn)− x̂(sn)

)
=

d∑
i=1

(βn
i (x)− β̂n

i (x))Φ(sn+1, s0)ei.

Then, by taking the norm on both sides and applying the triangle inequality,

we conclude that

|x(sn+1)| ≤
d∑

i=1

|βn
i (x)− β̂n

i (x)||Φ(sn+1, s0)ei|.

Now, by the definition of λt,6 we get that |Φ(sn+1, s0)ei| ≤ eλ
sn+1sn+1 for all

i ∈ [d]. Further, by recalling the expression of Γn
i and by the definitions

of β̂n
i , β

n
i and qni (x), we conclude that |βn

i (x) − β̂n
i (x)| ≤ ϵ̃

d
e−(λsn+1+α)sn+1 .

Hence, we get that

|x(sn+1)| ≤
d∑

i=1

ϵ̃

d
e−αsn+1 = ϵ̃e−αsn+1 .

Therefore, |x(sn+1)| ≤ ϵ̃e−αsn+1 ≤ C
(
|x(t0)| + ϵ̃

)
e−α(sn+1−t0) and we proved

the case for step n+ 1.

- Part 3:

Now, pick any n ∈ Z≥0 and any t ∈ [sn, sn+1). Note that the variation of

6Recall that λsn+1 = sup{ 1
t log(∥Φ(t, t0)∥) : sn+1 ≥ t ≥ t0}.
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parameters formula gives us that

x(t) =Φ(t, sn)x(sn)−∫ t

sn

Φ(t, s)B(s)B′(s)Φ(sn+1, s)dsW
−1(sn+1, sn)Φ(sn+1, sn)x̂(sn).

Notice that∫ t

sn

Φ(t, s)B(s)B′(s)Φ′(sn+1, s)ds =

Φ(t, sn+1)

∫ t

sn

Φ′(sn+1, s)B(s)B′(s)Φ(sn+1, s)ds.

Next, let

Ω(t, sn+1, sn) :=

∫ t

sn

Φ(sn+1, s)B(s)B′(s)Φ(sn+1, s)ds

and let

Θ(t, sn+1, sn) :=

∫ sn+1

t

Φ(sn+1, s)B(s)B′(s)Φ(sn+1, s)ds.

Further, note that7 Ω(t, sn+1, sn) ≽ 0, Θ(t, sn+1, sn) ≽ 0, and W (sn+1, sn) ≻
0. Also, the definitions imply thatW (sn+1, sn) = Ω(t, sn+1, sn)+Θ(t, sn+1, sn)

for any t ∈ [sn, sn+1). The two latter facts imply that ∥Ω(t, sn+1, sn)∥ ≤√
d∥W (sn+1, sn)∥ and ∥Θ(t, sn+1, sn)∥ ≤

√
d∥W (sn+1, sn)∥.

Recall the semigroup property for the transition matrix, i.e.,

Φ(t, z) = Φ(t, r)Φ(r, z) for any z ≥ t0, t ≥ t0 and any z ≥ t0. So, we get

x(t) = Φ(t, sn)x(sn)−

Φ(t, sn+1)Ω(t, sn+1, sn)W
−1(sn+1, sn)Φ(sn+1, sn)x̂(sn) =

Φ(t, sn)
(
x(sn)− Φ(sn, sn+1)Ω(t, sn+1, sn)W

−1(sn+1, sn)Φ(sn+1, sn)x̂(s)
)
.

By rewritting x̂(sn) = x̂(sn)− x(sn) + x(sn) and using the fact that

7Since Φ(sn+1, s)B(s)B′(s)Φ′(sn+1, s) ≽ 0 for all s ∈ [sn, sn+1).
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Φ(t, r)Φ(r, t) = Id for every t ≥ t0 and every r ≥ t0, we get

x(t) = Φ(t, sn)
(
Φ(sn, sn+1)(I − Ω(t, sn+1, sn)W

−1(sn+1, sn))Φ(sn+1, sn)x(s)

− Φ(sn, sn+1)Ω(t, sn+1, sn)W
−1(sn+1, sn)Φ(sn+1, sn)(x̂(sn)− x(sn))

)
=

Φ(t, sn+1)Θ(t, sn+1, sn)W
−1(sn+1, sn)Φ(sn+1, sn)x(s)

− Φ(t, sn+1)Ω(t, sn+1, sn)W
−1(sn+1, sn)Φ(sn+1, sn)(x̂(sn)− x(sn)).

Taking the norm on both sides and using the triangle inequality yields

|x(t)| ≤ ∥Φ(t, sn+1)∥∥Θ(t, sn+1, sn)∥∥W−1(sn+1, sn)∥×

× ∥Φ(sn+1, sn)∥|x(s)|+ ∥Φ(sn, sn+1)∥∥Ω(t, sn+1, sn)∥×

× ∥W−1(sn+1, sn)∥∥Φ(sn+1, sn)∥|x̂(sn)− x(sn)|.

We invoke Lemma 3.3.4 and notice that it implies that

∥W (sn+1, sn)∥ ≤ sup{∥B(t)∥2 : t ≥ t0}
2ξ

e2ξsn+1 .

Then, we combine that with the fact that

max{∥Ω(t, sn+1, sn)∥, ∥Θ(t, sn+1, sn)∥} ≤
√
d∥W (sn, sn+1)∥,

to conclude that

max{∥Ω(t, sn+1, sn)∥,∥Θ(t, sn+1, sn)∥} ≤
√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ
e(2ξ+θ)(sn+1).

By the exponential energy-growth condition, we know that there exist θ ∈
R≥0 and N ∈ R>0 such that ∥W−1(sn1 , sn)∥ ≤ Neθsn+1 . So, we have that

|x(t)| ≤
√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ
e(2ξ+θ)(sn+1)∥Φ(sn+1, sn)∥×

×
(
∥Φ(t, sn+1)∥|x(s)|+ ∥Φ(sn, sn+1)∥|x̂(sn)− x(sn)|

)
.

By Lemma 3.3.3, for any t ∈ [sn, sn+1), we get ∥Φ(t, sn)∥ ≤ eξ(t−t0), which
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implies that

|x(t)| ≤
√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ
e(4ξ+θ)sn+1

(
|x(sn)|+ |x̂(sn)|

)
≤

√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ
e(4ξ+θ)(sn+1−t0)

(
|x(sn)|+ |x̂(sn)|

)
,

where the last inequality follows from the fact that t0 ≥ 0. Note that |x(sn)−
x̂(sn)| ≤

∑d
i=1 ∥Φ(sn, s0)ei∥|βn

i (x) − β̂n
i (x)| ≤ ϵ̃e−α(sn+1−t0) by the defining

equations of βn
i , β̂

n
i , and x̂(sn) presented in part 1 of the proof, from which

we conclude that

|x̂(sn)| ≤ ϵ̃e−αsn+1 + |x(sn)|.

So, we can write

|x(t)| ≤
√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ
e(4ξ+θ)(sn+1−t0)

(
2|x(sn)|+ ϵ̃e−α(sn+1−t0)

)
.

Thus, by the conclusion of the proof of part 2, we get

|x(t)| ≤
√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ
e(4ξ+θ)(sn+1−t0)

(
2C(|x(t0)|+ ϵ̃) + ϵ̃

)
e−α(sn+1−t0) ≤

√
dN sup{∥B(t)∥2 : t ≥ t0}

2ξ

(
2C|x(t0)|+ (2C + 1)ϵ̃

)
e−µ(sn+1−t0).

Since α = (4ξ + θ+ µ). Finally, recall that ϵ =
√
d(2C+1)N sup{∥B(t)∥2:t≥t0}

2ξ
ϵ̃ and

M =
√
dCN sup{∥B(t)∥2:t≥t0}

ξ
. Hence, we conclude that

|x(t)| ≤ (M |x(t0)|+ ϵ)e−µ(sn+1−t0) ≤ (M |x(t0)|+ ϵ)e−µ(t−t0)

for all t ≥ t0. Therefore, we proved that UT (ϵ,M,K, µ) is a stabilizing control

set, concluding the proof of part 3.

- Part 4 : Note that there is a bijection between the elements of
∏n

j=0

∏d
i=1 C

j
i

and those of UT (ϵ,M,K, µ) by the definition of v(x, t). So, #UT (ϵ,M,K, µ) =∏n
j=0

∏d
i=1#Cj

i . Also, by the same equations, we have that #UT (ϵ,M,K, µ)

is constant for T ∈ [sn, sn+1) for each n ∈ Z≥0. Thus,

1

T
log
(
#UT (ϵ,M,K, µ)

)
≤ 1

sn
log
(
#UT (ϵ,M,K, µ)

)
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for T ∈ [sn, sn+1). Also, note that

#Cn
i =

⌈
e(λ

sn+1+α)sn+1−(λsn+α)sn
⌉

for every i ∈ [d] and n ∈ Z≥1. Therefore,

log

(
n∏

j=1

d∏
i=1

Cj
i

)
≤ d
(
(λsn+1 + α)sn+1 − (λs1 + α)s1 + n

)
,

where the inequality comes from the facts that log(⌈ey⌉) ≤ y+1 for y ∈ R≥1

and from the property of telescoping series. Combining our previous re-

sults, we arrive at 1
T
log(#UT (ϵ,M,K, µ)) ≤ d

sn

(
(λsn+1 + α)sn+1 − (λs1 +

α)s1 + n
)
+

∑d
i=1 log(#C0

i )
sn

. Taking the limit superior on the left hand side

with T going to infinity implies that we are taking the limit superior on

the right hand sided with n going to infinity because n = inf{l ∈ Z≥0 :

sl ≤ T and sl+1 > T}. Hence, we get lim supT→∞
1
T
log(#UT (ϵ,M,K, µ)) ≤

lim supn→∞
d(λsn+1+α)sn+1

sn
+ n

sn
≤ d(λ̄ + α)R + Q. The first inequality fol-

lows from the fact that
∑d

i=1 log(#C0
i ) and (λs1 + α)s1 are finite. The last

inequality follows because lim supn→∞
n
sn

= Q and because given two se-

quences of positive numbers (an)n∈Z≥0
and (bn)Z≥0

, then lim supn→∞ anbn ≤
lim supn→∞ an lim supn→∞ bn and we have that

lim sup
n→∞

λsn+1 = λ̄

and lim supn→∞
sn+1

sn
= R by persistent complete controllability. Since our

bound does not depend on ϵ, we have that the previous inequality gives an

upper bound for b(M,µ). In this way, we proved that

b(M,µ) < lim
ϵ→0

b(U (ϵ,M,K, µ)) < d(λ̄+ α)R +Q < ∞

for every µ ∈ R>0 and our chosen M . Thus, we conclude the proof of the

theorem.

In the next chapter, we will see that controllable LTI systems are con-

trollable with a finite data-rate. In the following subsection, we state our

necessary condition for controllability with finite data-rate. Then, we use it

to show why the system from Example 3.2.1 is not controllable with finite

data-rate.
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3.3.2 Necessary Condition

In this subsection, we state a necessary condition for system (3.1) to be

controllable with finite data-rate. We prove this theorem in the Appendix

A.6.

Theorem 3.3.6. System (3.1) is controllable with finite data-rate only if it

is completely controllable.

Remark 3.3.7. We now analyze the gap between the hypotheses of the

necessary condition and those of the sufficient condition. More explicitly,

the sufficient condition requires the system to satisfy the exponential energy-

growth rate and the persistency of complete controllability in addition to the

necessary condition’s assumptions. We examine the role of each of those two

conditions separately: first, we note that the exponential energy-growth rate

is only used in part three of the proof of Theorem 3.3.5. Its purposed is to

bound the growth of the state between times sn and sn+1 for n ∈ Z≥0. We do

not know at this time if this condition is necessary or if it is a consequence

of our choice of stabilizing control set U (ϵ,M,K, µ) in the proof of Theorem

3.3.5. Assuming that our system satisfies the exponential energy-growth rate

is reasonable, however. This latter fact is true because, in practice, we require

the control energy to remain bounded, a stronger assumption. Second, we

use the persistency of the complete controllability in the last part of the proof

of Theorem 3.3.5 to bound the data-rate. Nonetheless, at the moment, it is

not clear if we can remove it from the statement of Theorem 3.3.5.

We now have tools to understand why Example 3.2.1 cannot be control-

lable with finite data-rate. Given an arbitrary increasing sequence (sn) with

limn→∞ sn = ∞, we know that there exists n0 ∈ Z≥0 such that sn > 1

for all n ≥ n0. Thus, the matrices W (sn+1, sn) are not invertible for each

n ≥ n0. This argument shows that that system is not controllable with finite

data-rate.

3.4 Conclusion

In this chapter, we discussed the problem of controlling LTV systems when

our controller operates with a finite data-rate. We motivated our study by
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showing that systems that are controllable in the usual sense might not be

controllable when our controller needs to operate with a finite the data-rate.

Then, we introduced a definition of controllability with finite data-rate that

extends the usual notion of arbitrary pole placement, characteristic of LTV

systems that are controllable in the usual sense. After that, we introduced

additional concepts to help us characterize when our system is controllable

with a finite data-rate. Namely, we introduced the notions of persistent

complete controllability and exponential energy-growth rate. Finally, we gave

a necessary and a sufficient condition for an LTV system to be controllable

when the data-rate is finite in terms of the latter mentioned notions.
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CHAPTER 4

CONTROLLABILITY AND CONTROLLER
DESIGN FOR SWITCHED LINEAR

SYSTEMS WITH A FINITE DATA-RATE

4.1 Chapter Overview

In this Chapter, we continue the discussion we started in Chapter 3 about

controllability with a finite data-rate of linear time-varying systems by spe-

cializing to switched linear systems [58]. For this case, we provide some

sufficient conditions for our system to be controllable with a finite data-rate.

The first of them is just a special case of the sufficient condition provided

in the previous chapter. The second of them has a constructive proof and

provides an algorithm for designing a controller. Additionally, this controller

can handle packet losses naturally. We illustrate this condition and algo-

rithm with a practical example. We consider a switched linear system with

controllable modes that we control over a communication network. However,

we assume that that communication channel is under a Denial-of-Service

(DoS) attack, i.e., the transmitted symbols, which carry information about

the quantized measurements of the plant state, may not always arrive at the

sampling times because of an attack. For this example, our task is to design

a switching signal and a controller. Further, we present a necessary condition

for our controllability notion to hold, although there is a gap between this

and the sufficient condition we provide. This latter fact is the topic of future

research.

We take this opportunity to connect this chapter with Chapter 3, where

we discussed controllability with a finite data-rate for linear time-varying

(LTV) systems. In that chapter, we presented a necessary condition and a

sufficient condition for a general LTV system to be controllable with a finite

data-rate. There, we gave a different sufficient condition for controllability

that works for more general LTV systems than the class of switched linear

ones. In the present chapter, we use the switched linear structure to derive

64



a different sufficient condition, which helps us associate controllability with

a finite data-rate of the switched system with the controllable subspaces of

each mode and the switching signal. Also, the switched structure appears

in our controller design technique. Further, we also consider the possibility

of packet losses, which we did not in our previous chapter. This latter fact

allows us to discuss some applications, such as the DoS attacks mentioned

above. Furthermore, we give a more in-depth explanation to concepts that

we only explained briefly in Chapter 3.

The structure of this chapter is as follows: First, in Section 4.2, we pose

our problem and describe why we need a new controllability notion. We

also introduce the practically motivated example we want to study. Still in

Section 4.2, we define controllability with a finite data-rate. Next, in Section

4.3, we state our necessary condition for controllability with a finite data-

rate. Also in that section, we introduce some new concepts needed for our

sufficient condition, illustrate them with figures and examples, and we state

our sufficient condition. We finish Section 4.3 with a disscussion on the gap

between the necessary condition and the sufficient one. After that, in Section

4.4, we describe our control algorithm and prove its correctness. Then, we

use that same algorithm to prove the sufficient condition. In Section 3.4, we

conclude and present future research directions.

Notation: We denote by Z>0 (Z≥0) the set of the positive (nonnegative)

integers. We denote by R the set of real numbers. We denote by R>0 (R≥0)

the set of positive (nonnegative) real numbers. Given m ∈ Z>0, we define the

set [m] := {1, . . . ,m} and [m]0 := [m] ∪ {0}. Given two integers a and b, we

denote by (a mod b) the remainder of the division of a by b. Given m ∈ Z>0,

we define the set [m] := {1, . . . ,m}. Given a set S, we denote by #S its

cardinality. For a set S ⊂ Z≥0, we denote by Sc its complement in the set

Z≥0. Let S ⊂ Rdx and ε ∈ R≥0, we define the ε-collar of S by1 Sε := {x ∈
Rdx : inf{|x − y| : y ∈ S} ≤ ε}. Let dx ∈ Z>0 and du ∈ Z>0, we denote by

Mdx×du the set of dx×du real matrices. Let dx ∈ Z>0, then we denote by Idx

the dx×dx identity matrix. We denote the transpose of a matrix A ∈ Mdx×du

by A′ ∈ Mdu×dx . Given a pair of matrices (A,B) with A ∈ Mdx×dx and B ∈
Mdx×du , we denote by ⟨A|B⟩ their controllable subspace. Given A ∈ Mdx×dx

andB ∈ Mdx×dx two symmetric positive semi-definite matrices, we write that

1Although, when ε is a positive integer, the notation Sε might cause confusion with
the Cartesian product of S, we make it clear in the text when we are using a collar.
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A ≥ B (A > B) if A−B is positive semidefinite (definite). For k ∈ [dx] and

A ∈ Mk×k, we define the matrix measure of A as µ(A) := limδ↓0
∥Ik+δA∥−1

δ
.

We denote by B(x, r) ⊂ Rdx (B[x, r] ⊂ Rdx) the open (closed) ball of radius

r ∈ R>0 and center x ∈ Rdx . For a matrix A ∈ Mdx×dx , we denote by N (A)

its null space. If A is a dx × dx real matrix and | · | is a vector norm2 in

Rdx , we denote by ∥A∥ := max{|Ax| : |x| = 1, x ∈ Rdx} the norm induced by

that vector norm. For a set S ⊂ Rdx , we define its maximum distance from

the origin as dist(S) := sup{|x| : x ∈ S}. We denote by log(a) the natural

logarithm of a ∈ R>0. We denote by L∞
loc([t0,∞),Rdu) the set of all Lebesgue

integrable (see, e.g., Chapter 2 of [59]) locally essentially bounded functions

from [t0,∞) to Rdu where t0 ∈ R≥0 and du ∈ Z>0. Finally, given a function

u : I ⊂ R → Rdu and a set J ⊂ I, we denote by u|J(·) the restriction of the

function u(·) to the subset J .

4.2 Motivation

We start this section by describing the class of systems we study in most of the

paper. Then, we explain why the usual notion of controllability is unfit to deal

with systems that have quantization and data-rate constraints. Further, we

present a new notion of controllability with finite data-rate, which addresses

the issues that appear in our setting. Next, we introduce some definitions

and preliminary results. Finally, we provide a partial characterization of our

controllability notion.

4.2.1 The Model

In this work, we study the controllability with a finite data-rate of switched

linear systems, i.e., systems described by equation

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), (4.1)

where the current time is t ∈ [t0,∞), the initial time is t0 ∈ R≥0, the initial

state is x(t0) = x0 and it belongs to a compact set with nonempty interior

K ⊂ Rdx , m ∈ Z>0 is the number of modes, σ : [t0,∞) → [m] is the switching

2If not stated otherwise, we assume that | · | is the Euclidean norm.
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signal, u : [t0,∞) → Rdu is the control function, and Ap ∈ Mdx×dx and

Bp ∈ Mdx×du are the matrices of each mode p ∈ [m]. We also assume that

u(·) ∈ L∞
loc([t0,∞),Rdu) and that σ(·) is a càdlàg function3. We denote by4

tn the n-th discontinuity point of σ(·) and we call such points the switching

times. Finally, we define by Φσ(t, τ) for t ∈ R and τ ∈ R the state-transition

matrix associated with the autonomous part of system (4.1), i.e., Φσ(t, τ) is

the unique solution to the differential equation Φ̇σ(t, τ) = Aσ(t)Φσ(t, τ) with

Φσ(τ, τ) = Idx .

A control law is a set U (K) of functions u(x, ·) indexed by initial condi-

tions x ∈ K ⊂ Rdx , i.e., each initial state x ∈ K corresponds to a unique

control u(x, ·) ∈ U (K). Denote by UT (K) := {v|[t0,T ](·) ∈ L∞
loc([t0, T ],R

du) :

v(·) ∈ U (K)} the set of restrictions of functions from our control law. We

define the data-rate of the control law U (K) as

b(U (K)) := lim sup
T→∞

1

T
log(#UT (K))

and we say that the control law U (K) operates with a finite data-rate if it

satisfies b(U (K)) < ∞. We can, alternatively, look at the control law as a

function with two parameters u(·, ·), where the first parameter is the initial

state and the second is the time. However, looking at the control law as a

set allows us to define the data-rate more naturally.

4.2.2 The Need for a New Controllability Notion

In this subsection, we explain why the usual notion of controllability of LTV

systems is not suitable when we consider control systems that use quantiza-

tion and that operate with finite data-rate.

To do that, we start by recalling the usual controllability notion (see, e.g.,

Chapter 9 of [54].) for LTV systems.

Definition 4.2.1. We say that system (4.1) is controllable in the usual sense

on [t0, T ], where T ≥ t0, if for every initial condition x(t0) = x0 ∈ Rdx there

exists a function u : [t0, T ] → Rdu such that x(T ) = 0.

3A function that is right-continuous and has a left limit everywhere.
4We consider t0 the 0-th discontinuity point of σ(·) to keep the notation simple.

67



To see why this notion is unfit when we work with finite data-rate, we

consider the following simple Example 4.2.1.

Example 4.2.1. Let ẋ(t) = u(t) where t ∈ R, x0 ∈ K ⊂ R with K compact

with a nonempty interior and u(t) ∈ Rdu . We can easily solve this equation

to get that x(T ) = x0 +
∫ T

t0
u(τ)dτ . Note that, if u(t) ∈ Rdu , this system

is controllable in the usual sense on the interval [t0, T ]. If we impose that

this control function comes from a control law that operates with finite data-

rate, we have that the set of possible controls u[t0,T ](·) on any interval of time

t ∈ [t0, T ] has a finite cardinality. Therefore, the integral
∫ T

t0
u(τ)dτ attains

at most finitely many values, but x0 belongs to the setK, which has infinitely

many points. Hence, it is not possible to make x(T ) = 0 for an arbitrary

initial condition in K.

The goal of the previous example is to make the straightforward observa-

tion that we cannot have x(T ) = 0 for an arbitrary initial condition in K,

which supports the claim that the usual controllability notion is unfit for the

case where we have finite data-rate. Thus, we must define a new notion of

controllability in this setting. One way of doing so is to think of controlla-

bility as the property of being able to drive the state as fast as possible to

the origin. The following Proposition 4.2.2 shows that, in general, the fastest

mode of decay for the norm of the state of system (4.1) using finite data-rate

is exponentially fast. Indeed, a stronger claim is true for a much larger class

of systems. We provide a proof of this proposition in Appendix A.5.

Proposition 4.2.2. Let the set of possible initial states K ⊂ Rdx have a

nonempty interior, let m ∈ Z>0 be the number of modes, and let t0 ∈ R≥0

be the initial time. Consider the switched nonlinear time-varying dynamics

given by

ẋ(t) = f(t, σ(t), u(x0, t), x(t)), (4.2)

where x(t0) = x0 ∈ K is a initial state, u(x0, ·) ∈ U (K) is the con-

trol function that corresponds to the initial state x0, U (K) is a control

law that operates with a finite data-rate, σ : [t0,∞) → [m] is a càdlàg

switching signal, and f : R≥0 × [m] × Rdu × Rdx → Rdx . Also, define

Ru := {u(x, t) ∈ Rdu : (x, t) ∈ P and u(x, ·) ∈ U (K)}, where5 P := {(x, t) ∈
K × [t0,∞) : |u(x, t)| < ∞ for u(x, ·) ∈ U (K)}. We assume that:

5Note that (K× [0,∞))\P has measure zero since u(·, ·) is locally essentially bounded.

68



• Equation (4.2) has a unique forward-complete6 Caratheodory solution

for each initial state x0 ∈ K and the initial time t0. We denote by7

ξ(t, t0, x0) the Caratheodory solution of (4.2) at time t when the initial

time is t0 and the initial state is x0.

• There exists a compact set Bx ⊂ Rdx such that8 {|ξ(t, t0, x0)| : x0 ∈
K, t ∈ [t0,∞)} ⊂ Bx.

• f(·, ·, ·, ·) is continuously differentiable in its fourth argument. Define

the Jacobian of f(·, ·, ·, ·) in its fourth argument as fx : R≥0×[m]×Rdu×
Rdx → Rdx×dx where (fx(·, ·, ·, ·))(i,j) := ∂fi

∂xj
(·, ·, ·, ·) for each pair (i, j) ∈

[dx]
2. We assume that fx(·, ·, ·, ·) is a continuous function. Further, the

quantity a := ess sup{∥fx(p1, p2, p3, p4)∥ : p1 ∈ [t0,∞), p2 ∈ [m], p3 ∈
Ru, p4 ∈ Bx} is finite.

Denote by dist(t, t0, K) := sup{|ξ(t, t0, x0)| : x0 ∈ K} the maximum distance

from a point in the reachable set of (4.2) at time t ∈ [t0,∞) and the origin

of Rdx when the initial condition belongs to K. Then, we have that

lim inf
t→∞

log(dist(t, t0, K))

t
> −∞.

In particular, if f(t, σ(t), u(x0, t), x(t)) = Aσ(t)x(t) + Bσ(t)u(x0, t), Ru is a

bounded subset of Rdu , and the second bullet above is true, then this result

holds.

Thus, it seems natural to relax the usual controllability notion by asking

the norm of the state to converge to zero with an arbitrary exponential rate

of decay instead of asking the state to equal zero in finite time. To formally

state our controllability notion, we use the following Definition 4.2.2, which is

an adaptation from the definitions given in [11] about stabilization with finite

data-rate. To improve readability, we name some sets and properties that

were not named in [11]. We remark that the following definitions appeared

in Chapter 3. We rewrite them here for the reader’s convenience.

6This means that the solution is defined for all t ∈ [t0,∞). See, e.g., Section 1.5
from [60] for sufficient conditions on f(·, ·, ·, ·) for this assumption to hold.

7Note that the control is defined by the initial state.
8Informally, we are asking the control law to keep the state bounded uniformly over all

possible initial states.
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Definition 4.2.2. We say that system (4.1) satisfies the exponential decay

condition with rate α ∈ R≥0, with M ∈ R>0, and ϵ ∈ R>0 if for each x0 ∈
K ⊂ Rdx there exists u(·) ∈ L∞

loc([t0,∞),Rdu) such that the corresponding

solution satisfies

|x(t)| ≤
(
M |x0|+ ϵ

)
e−α(t−t0) (4.3)

for all t ∈ R≥t0 . For given α ∈ R≥0, M ∈ R>0, ϵ ∈ R>0, and K ⊂ Rdx

as above, we call a set9 R(ϵ,M,K, α) ⊂ L∞
loc([t0,∞),Rdu) a stabilizing con-

trol set of system (4.1) if for every x0 ∈ K, there exists a control function

u(·) ∈ R(ϵ,M,K, α) such that (4.3) holds for the corresponding solution.

Furthermore, we denote by

RT (ϵ,M,K, α) := {u|[t0,T ](·) ∈ L∞
loc([t0, T ],R

du) : (4.4)

u(·) ∈ R(ϵ,M,K, α)}

a set of restrictions of stabilizing controls, where T > t0 is arbitrary. We

define the data-rate associated with system (4.1) in the following manner.

First, given a stabilizing control set R(ϵ,M,K, α), we define the data-rate of

the stabilizing control set R(ϵ,M,K, α) as10

b(R(ϵ,M,K, α)) := lim sup
T→∞

1

T
log(#RT (ϵ,M,K, α)).

Next, we define the data-rate of system (4.1) as11

b(M,α) := lim
ϵ→0

(inf{b(R(ϵ,M,K, α)) : R(ϵ,M,K, α) (4.5)

is a stabilizing control set of (4.1)}) .

Finally, we say that system (4.1) can be stabilized with finite data-rate with

M ∈ R>0 and α ∈ R>0 if b(M,α) < ∞.

The reader might wonder if we can remove the ϵ term from inside inequality

(4.3) and still get a reasonable notion of stabilizability with finite data-rate.

The answer is negative and is proved in Proposition 2.2 of [11] where the

9We note that this set can be infinite in general.
10The corresponding quantity in [11] uses the limit inferior instead of limit superior.

Because of that, if the quantity given in [11] is infinite, ours is also infinite.
11Note that b(M,α) also depends on the set of initial conditions K. We drop that

dependence to make the notation simpler.
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author showed that, for any pair (α,M) ∈ R>0 × R>0, LTI systems with

poles with a nonnegative real part cannot satisfy (4.3) with ϵ = 0 and have

b(M,α) < ∞. Also, we take this opportunity to note that the limit on the

right-hand side of Equation (4.5) exists. That happens because the infimum

on the right-hand side of that equality is a monotonically decreasing function

of ϵ. Consequently, that limit can be replaced by the supremum over ϵ ∈ R>0.

We also note that R(ϵ,M,K, α) is a control law12 that operates with the

data-rate b(R(ϵ,M,K, α)). Now, we are ready to define controllability with

a finite data-rate, which is one of the contributions of this paper.

Definition 4.2.3. We say that system (4.1) is controllable with a finite data-

rate if for every α ∈ R>0, there exists M ∈ R≥0 such that system (4.1) can

be stabilized with finite data-rate b(M,α) < ∞.

In light of our discussion, Definition 4.2.3 captures the property of the norm

of the state converging to zero as fast as possible in our setting. We believe

that it is a natural candidate for extending the concept of controllability to

switched linear systems with finite data-rate. It is important to remark that

the previous definition is new and it differs from the definition of stabilization

with finite data-rate, originally given in [11], in the sense that it captures the

possibility of stabilization with an arbitrary convergence rate α ∈ R≥0 , while

in [11] α was taken to be a fixed parameter.

4.2.3 Motivating Example

In this subsection, we present an example to motivate the study of control-

lability with a finite data-rate concept. We answer the questions we pose

in this subsection later in the paper once we have enough tools. Before we

continue, we need to introduce a few concepts that we will use throughout

the remainder of this document.

First, define the sequence of sampling times (τn)n∈Z≥0
⊂ [t0,∞) by

τn := t0 + nTp, (4.6)

where Tp ∈ R>0 is the sampling period. When (tn)n∈Z≥0
⊂ (τn)n∈Z≥0

, we

say that the switching happens synchronously with the sampling. Now, let

12See Subsection 4.2.1
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S := {n ∈ Z≥0 : σ(τn) ̸= σ(t) for some t ∈ [τn, τn+1)}, i.e., n ∈ S if a

switching occurs in the interior of the time interval [τn, τn+1). Note that

S = ∅ only if the switchings happen synchronously with the samplings, or if

there are no switchings.

Now we are ready to present our motivating example. Our example deals

with a class of cyberphysical attacks called DoS attacks. We refer to [61] for

a discussion on their practical relevance.

Example 4.2.3. (DoS attack) Assume that we want to control a switched

linear system described by Equation (4.1) over a communication network,

and suppose that the modes (Aj, Bj) are controllable for each j ∈ [m]. We

also assume that the encoder sends a quantization symbol qn corresponding

to the state x(τn) at time τn ∈ R>0 for n ∈ Z≥0. The channel may transmit

the symbol or erase it (when an attack occurs), i.e., the decoder may receive

either qn or an empty symbol (in which case we say that we lost a packet).

We further suppose that the encoder knows when an attack occurs. We ask

if we can drive the state of this system to zero exponentially fast with an

arbitrarily prescribed exponential decay rate. We give a sufficient condition

for this problem to have a solution in Section 4.3 and, for that case, we

present a controller design technique in Section 4.4.

We take this opportunity to informally introduce some sets, related to

packet losses, that are instrumental in our later discussion. Let L ⊂ Z≥0

be the set of sampling time indices such that no packet loss occurs at time

τn. Then, we define R := L ∪ Sc as the set of sampling time indices’ n such

that no switching occurs in the interior of the time interval [τn, τn+1) nor a

packet loss occurs at τn. The generalized set of losses associated to system

(4.1) is Rc. Notice that if there are no packet losses and the switchings are

synchronous, we have that Rc = ∅, explaining the name of the set. We define

both sets L and R formally in Subsection 4.3.6.

4.3 Controllability with a Finite Data-Rate

In this section, we state a necessary condition and sufficient condition for

a switched linear system to be controllable with a finite data-rate. We

recall some classical concepts related to controllability to state our nec-

essary condition. Next, we introduce some new controllability concepts,
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which require some discussion and examples, to state our sufficient con-

dition. Then, we introduce concepts related to quantized control and the

coder-decoder/controller scheme, which we use to prove our sufficient condi-

tion in a constructive manner. Finally, we briefly discuss the gap between the

necessary condition and the sufficient condition, and we provide examples of

applications. In particular, we answer the questions posed in Example 4.2.3

as an application.

4.3.1 The Necessary Condition

We start this subsection by recalling the notion of complete controllability,

first stated in [56].

Definition 4.3.1. We say that system (4.1) is completely controllable if, for

each t̄ ∈ [t0,∞), there exists t1 ∈ (t̄,∞) such that (4.1) is controllable in the

usual sense13 on the time interval [t̄, t1].

We have two remarks about this definition. First, some authors, such

as [62] in Chapter 4, use the term “complete controllability” to refer to usual

controllability on a given time interval. The difference is that Definition 4.3.1

requires system (4.1) to be controllable over infinitely many intervals, while

the definition given in [62] requires the system to be controllable on a single

time interval. Second, the next definition is helpful.

Definition 4.3.2. The controllability Gramian of system (4.1) is given by

W (t, s) :=

∫ t

s

Φσ(t, τ)Bσ(τ)B
′
σ(τ)Φ

′
σ(t, τ)dτ (4.7)

for any t ∈ R>0 and s ∈ R>0.

Then, it is a well-known fact, see, e.g., [48], that complete controlabillity

is equivalent to the statement: for every t̄ ∈ R≥0 there exists some t1 > t̄

such that W (t1, t̄) is invertible. This result gives us an operational way to

check if a system is completely controllable. Now, we are ready to state our

necessary condition in Theorem 4.3.1. We provide a proof of it in Appendix

A.6.

13See Definiton 4.2.1.
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Theorem 4.3.1. System (4.1) is controllable with finite data-rate only if it

is completely controllable.

This statement is interesting because it gives a simple condition that guar-

antees that, if not satisfied, we can rule out the possibility of our system

being controllable with a finite data-rate. This theorem appears in Chapter

3 of this thesis, stated for a more general class of LTV systems. In fact, in

Example 3.2.1 from Chapter 3, we present a system that does not satisfy the

necessary condition, with the goal of illustrating the usage of our previous

theorem. The reason why we restate this theorem is because we want to re-

mind the reader about it before we argue in Section 4.4.3 that this condition

is close to our sufficient condition stated in Theorem 4.3.2, which we present

in the next subsection.

4.3.2 The Sufficient Condition: the case without packet losses

In this subsection, we study the sufficient condition when no packet losses

occur. We deal with packet losses in Subsection 4.3.4. To state the suffi-

cient condition, we must first recall a classical controllability notion for LTV

systems.

Definition 4.3.3. We say that system (4.1) is uniformly completely con-

trollable (UCC) if there exist T ∈ R>0 and some w ∈ R>0 such that the

controllability Gramian satisfies wIdx ≤ W (t + T, t) for all t ∈ R>0, where

the inequality here denotes the partial order relation on symmetric positive

definite matrices.

We remark that this concept was introduced by Kalman in works [48]

and [56] using different conditions from the one we stated. It was [63] who

proved that, if Aσ(·) and Bσ(·) are uniformly bounded for all times, then the

condition we present in Definition 4.3.3 is equivalent to UCC. Now, we are

ready to state our sufficient condition:

Theorem 4.3.2. System (4.1) is controllable with a finite data-rate if it is

UCC.

This result is a consequence of Theorem 3.3.5 from Chapter 3 of this disser-

tation. It happens that being UCC is a stronger condition than the condition
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presented in that chapter. Thus, an LTV UCC system is controllable with a

finite data-rate. We prove this latter fact in Appendix A.7.

The previous result applies to any LTV system14, and it requires us to

prove that our system is UCC, which might be difficult in general. However,

assuming that our system is given by the switched linear dynamics (4.1), we

can prove results that involve the controllable subspaces of the modes and

some properties of the switching signal.

4.3.3 Applications

To extend our theory to deal with a more general case that considers packet

losses, we discuss two relatively simple examples of practical relevance that

we can analyze with what we have discussed. First, we assume that the

switchings are synchronous and derive a relatively simple condition for UCC.

We illustrate that case with an example where the modes are unstabilizable,

but the switched system is UCC. After that, we remove the assumption on

synchronicity and state a result that gives us another condition for UCC

when the modes are controllable. In particular, when system (4.1) satisfies

an average dwell-time condition (ADT), we arrive at an elementary relation

involving the chatter bound, the average dwell-time, and the sampling period

that guarantee UCC.

To state our condition for uniform complete controllability when the switch-

ings are synchronous, we must introduce a new controllability definition. We

briefly recall that ⟨A|B⟩ denotes the controllable subspace of the pair (A,B).

Definition 4.3.4. Let ℓ ∈ Z>0 be a discrete time-horizon and let S = ∅. For
each k ∈ Z≥0, let n = n(k) := ⌊k

ℓ
⌋. Define Vk := Φ−1

σ (τk, τℓn)⟨Aσ(τk)|Bσ(τk)⟩.
We say that system (4.1) is ℓ−uniformly completely controllable if

ℓ(n(k)+1)−1∑
j=ℓn(k)

Vj = Rdx (4.8)

for each15 k ∈ Z≥0.

14Any system with ẋ(t) = A(t)x(t)+B(t)u(t), where the function u(·) is integrable and
locally essentially bounded an the matrix functions A(·) and B(·) are locally integrable
and bounded.

15Note that for each l ∈ Z≥0 there exists some k ∈ Z≥0 such that l = ⌊k
ℓ ⌋. Thus, n(k)
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To help the reader better understand the idea behind Definition 4.3.4, we

first discuss its relationship with classical controllability notions. Notice that

Equation (4.8) is the same as the condition for complete controllability on

the interval [τℓn, τℓ(n+1)] given in Chapter 4 of [62] for some fixed n ∈ Z≥0
16.

In fact, more is true. Since Equation (4.8) holds for each n ∈ Z≥0, a stronger

controllability property must hold. The following lemma shows that Defi-

nition 4.3.4 and UCC are equivalent when the switchings are synchronous.

Therefore, in the synchronous case, the existence of ℓ ∈ Z≥0 such that our

system is ℓ-uniformly completely controllable is sufficient for our system to

be controllable with a finite data-rate.

Lemma 4.3.3. Let S = ∅. Then, there exists some ℓ ∈ Z>0 such that system

(4.1) is ℓ−uniformly completely controllable if, and only if, system (4.1) is

UCC.

The following example should help us illustrate how we can apply Lemma

4.3.3 to show a nontrivial result.

Example 4.3.4. Let ℓ ∈ Z>0, let m = 2, and let t0 = 0. Let {e1, e2} ⊂ R2

be the canonical basis. Assume that, for each n ∈ Z≥0, there exists at least

one integer ki(n) such that ℓn ≤ ki(n) < ℓ(n + 1) and that σ(ki(n)) = i for

i ∈ [2]. Also, let A1 =

(
1 0

0 0

)
, A2 =

(
0 0

0 2

)
, B1 = e1 , and B2 = e2.

Note that each individual mode is unstabilizable. A simple calculation shows

that ⟨Ai|Bi⟩ = span{ei} for i ∈ [2]. Also, since the matrix Ai is diagonal for

each i ∈ [2], we have that Φσ(t, s) is diagonal for each t ∈ R≥0 and s ∈ [t,∞).

This latter fact implies that Φ−1
σ (t, s)⟨Ai|Bi⟩ = ⟨Ai|Bi⟩ = span{ei} for each

i ∈ [2], all t ∈ R≥0, and all s ∈ [t,∞). In particular, for each n ∈ Z≥0

and each i ∈ [2], we have that Vki(n) = span{ei}. Thus, we conclude that∑ℓ(n+1)−1
j=ℓn Vj ⊃ Vk1(n) + Vk2(n) = R2, which implies that our system is ℓ-

uniformly completely controllable. Thus, by Lemma 4.3.3, our system is

controllable with a finite data-rate.

The previous example used the fact that the switchings are synchronous to

conclude that the switched system is controllable with a finite data-rate, even

though the individual modes are unstabilizable. This result, however, relies

is a surjective function.
16We also notice that there exists an analogous characterization for the concept of

complete observability, given in [64].
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on synchronicity. At this point, the reader might wonder if there are simple

conditions that ensure that the conditions from Theorem 4.3.2 hold when

we do not require the switchings to be synchronous. The next proposition

answers this questions affirmatively.

Proposition 4.3.5. Let ℓ ∈ Z≥0. If, for each index n ∈ Z≥0, there exists

some index k(n) ∈ Z≥0 such that ℓn ≤ k(n) < ℓ(n + 1), that k(n) ̸∈ S, and
that ⟨Aσ(τk(n))|Bσ(τk(n))⟩ = Rdx , then system (4.1) is UCC.

Informally, the last proposition is saying the following: if each interval of

the form [τℓn, τℓ(n+1), where n ∈ Z≥0 and ℓ ∈ Z≥0 is given, has a sampling

subinterval without a switching in its interior and a controllable mode is ac-

tive on that subinterval, then the conditions of Theorem 4.3.2 hold. This

latter condition is verified, for instance, when we have a “safe” mode, which

we visit at least once in each time interval [τℓn, τℓ(n+1), i.e., we vist the con-

trollable mode “frequently enough”.

Interestingly, Proposition 4.3.5 has an immediate corollary of practical

interest. First, we recall the definition of average dwell-time.

Definition 4.3.5 (Average Dwell-Time [65]). We say that system (4.1) sat-

isfies an average dwell-time condition [65] if there exists a chatter bound

N0 ∈ Z≥0 and an average dwell-time τD ∈ R>0 such that the number of

switches Nσ(t, τ) on any time interval of the form [τ, t) ⊂ [t0,∞) satisfies

Nσ(t, τ) ≤ N0 +
t−τ
τD

.

The next result gives us a simple relation between the sampling period, the

chatter bound, and the dwell-time of our switching signal that ensures that

system (4.1) is controllable with a finite data-rate. We prove this corollary

in the Appendix A.10.

Corollary 4.3.6. Assume that system (4.1) satisfies the ADT condition with

average dwell-time τD ∈ R>0 and chatter bound N0 ∈ Z≥0. Further, assume

that system (4.1) modes’ are controllable. If τD
N0+2

≥ Tp, then the system is

controllable with a finite data-rate.

4.3.4 The Sufficient Condition: the general case

In the previous two subsections, we described a sufficient condition for a

switched linear system to be controllable with a finite data-rate when no
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packet losses are present. Also, we showed how we can apply that result

to cases of practical interest. In this subsection, we finally address the case

where packet losses can occur.

To state the sufficient condition, we must make a small change to Defini-

tion 4.3.4 to accommodate packet losses, which will also be useful when we

discuss our controller design technique. We briefly recall that Sc denotes the

complement for a set S ⊂ Z≥0.

Definition 4.3.6. Let ℓ ∈ Z>0 be a discrete time-horizon and let R ⊂ Z≥0

be the set of generalized losses17. For each k ∈ Z≥0, let n = n(k) := ⌊k
ℓ
⌋.

Define Vk := Φ−1
σ (τk, τℓn)⟨Aσ(τk)|Bσ(τk)⟩, if k ∈ R, and Vk := {0}, otherwise.

We say that system (4.1) is ℓ−uniformly completely controllable with losses

in Rc if
ℓ(n(k)+1)−1∑

j=ℓn(k)

Vj = Rdx (4.9)

for each18 k ∈ Z≥0.

We take this opportunity to make a few comments about Definition 4.3.6.

Note that ℓ-uniform controllability, introduced in Definition 4.3.4, is the same

as ℓ-uniform controllability with losses in the empty set. In this sense, Def-

inition 4.3.6 generalizes Definition 4.3.4. Also, recall from Subsection 4.2.3

that the set R is the set of sampling time indices’ where no switching occurs

on the interior of the time interval [τk, τk+1) and that no packet losses happen

at times τk for each k ∈ R.

Even though Definition 4.3.6 plays a major role in our theory, our suf-

ficiency theorem requires one more condition, which only appears because

we work with a continuous-time system with data-rate constraints for its

control. To precisely state that additional condition we need yet another

technical definition, which we present below.

Definition 4.3.7. (compatible projection matrix) Let ℓ ∈ Z>0 be a discrete

time-horizon and letRc ⊂ Z≥0 be the generalized set of losses of system (4.1).

For each k ∈ Z≥0, let n = n(k) := ⌊k
ℓ
⌋. We define a compatible projection

matrix Pk in the following way.

17See, Subsection 4.2.3.
18Note that for each l ∈ Z≥0 there exists some k ∈ Z≥0 such that l = ⌊k

ℓ ⌋. Thus, n(k)
is a surjective function.
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• If k ∈ R: First, choose a subspace W̄k ⊂ Rdx such that19 ⟨Aσ(τk)|Bσ(τk)⟩⊕
W̄k = Φ(τk, τℓn)

∑ℓ(n+1)−1
j=k Vj. Since ⟨Aσ(τk)|Bσ(τk)⟩ ∩ W̄k = {0}, we

have that W̄k ⊂ Φ(τk, τℓn)
∑ℓ(n+1)−1

j=k+1 Vj. Next, choose another sub-

space W̃k ⊂ Rdx such that ⟨Aσ(τk)|Bσ(τk)⟩ ⊕ W̄k ⊕ W̃k = Rdx . Then, de-

fine Pk ∈ Mdx×dx as the oblique projection20 matrix over ⟨Aσ(τk)|Bσ(τk)⟩
that is parallel to W̄k ⊕ W̃k, i.e., Pkx = x if x ∈ ⟨Aσ(τk)|Bσ(τk)⟩ and

Pkx = 0 if x ∈ W̄k ⊕ W̃k. Since ⟨Aσ(τk)|Bσ(τk)⟩ ⊕ W̄k ⊕ W̃k = Rdx , this

construction completely defines the projection matrix Pk.

• If k ∈ Rc: define Pk = 0 ∈ Mdx×dx .

We first note that Pk is an oblique projection matrix for each k ∈ Z≥0, i.e.,

P 2
k = Pk. Also, we notice that the specific construction above requires some

choices of vector subspaces, namely W̄k and W̃k, that are up to the designer

as long as they comply with the conditions mentioned. Also, because of

this freedom, the construction in Definition 4.3.7 is technical and difficult to

understand at first. In the next subsection, we present Example 4.3.10, where

we walk the reader through each detail of this construction to help clarify it.

We are ready to enunciate the assumptions needed to state Theorem 4.3.7.

Assumption 4.3.1. There exists ℓ ∈ Z>0 such that system (4.1) is ℓ-

uniformly completely controllable with losses in its generalized set of losses

Rc.

Assumption 4.3.2. There exist a real number g ∈ R≥0 and a sequence

(Pk)k∈Z≥0
⊂ Mdx×dx of compatible projection matrices such that ∥Pk∥ ≤

(1 + g) for all k ∈ Z≥0.

We now have all the definitions needed to state the sufficient condition for

controllability with a finite data-rate.

Theorem 4.3.7. System (4.1) is controllable with a finite data-rate if As-

sumptions 4.3.1 and 4.3.2 hold.

We present the proof of this Theorem in Section 4.4. The proof relies

on Proposition 4.2.2, which states that our control Algorithm 4.4.1 ensures

that the norm of the solution of (4.1), under the action of the control law

19Recall that for two vector subspaces V ⊂ Rdx and W ⊂ Rdx , when we write the direct
sum V ⊕W , we implicitly have that V ∩W = {0}.

20This means that it may not be an orthogonal projection in general.

79



the algorithm constructs, satisfies the exponential decay condition 3.2 with a

prescribed exponential rate of decay, that is an algorithm parameter. Then,

we show in Subsection 4.4.4 how to use that proposition to prove Theorem

4.3.7. Because of this proof structure, we claim that our proof is constructive

since we can use Algorithm 4.4.1 to design controllers in practice.

4.3.5 Understanding the General Sufficient Condition

In Subsection 4.3.3, we discussed how to interpret our results when the

switching signal is synchronous. Now, we explain the ideas behind the previ-

ous subsection’s definitions, which deal with switchings that might be asyn-

chronous and packet losses can be present.

We start by explaining what happens when the set of generalized losses is

nonempty and why it matters. The idea behind Definition 4.3.6 is as follows:

on each interval of the form [τℓn, τℓ(n+1)), for an arbitrary n ∈ Z≥0, if we are

only allowed to use the control u(t) = 0 for each t ∈ [τk, τk+1) ⊂ [τℓn, τℓ(n+1))

and each k ∈ Rc∩{ℓn, . . . , ℓ(n+1)−1}, our system would still be completely

controllable if (4.9) was true. Thus, if we have a communication channel

between the plant and the controller and the packets carrying information

about the system’s state21 at times τk, for k ∈ Rc, were lost, we would still

be able to send the state of the system to zero under the assumption that our

system is ℓ−uniform completely controllable with losses in Rc. We state that

claim more formally in Lemma 4.3.8, which we prove in Appendix A.11. We

can see Definition 4.3.6 as an operational version of the property described

in that lemma’s statement. Further, we note that this property is not related

to data-rate constraints, but it is a characteristic of system (4.1) and the set

R.

Lemma 4.3.8. Let Rc ⊂ Z≥0 be the generalized set of losses of system

(4.1) and let ℓ ∈ Z>0. System (4.1) is ℓ−uniformly completely controllable

with losses in Rc if, and only if, for each n ∈ Z≥0 and each x ∈ Rdx , there

exists a control un(·) ∈ L∞
loc([τℓn, τℓ(n+1)),Rdu) with the following property: If

x(τℓn) = x, then we have x(τℓ(n+1)) = 0 and un(t) = 0 for each t ∈ [τk, τk+1)

and each k ∈ Rc.

21Here we are assuming that we can transmit perfect information through the channel,
i.e., data-rate constraints play no role in this part of the discussion.
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We already discussed how the property presented in Assumption 4.3.1 is re-

lated to UCC when Rc = ∅ and gave an interpretation for it in Lemma 4.3.8.

Assumption 4.3.2, by its turn, has a geometric interpretation, which can be

understood rigorously by studying the equality presented in the following

Lemma 4.3.9. We provide a proof of it in Appendix A.12 for completeness.

Note, however, that this result is standard and its proof can be found in

Theorem 3.1 from [66]. It is also worth mentioning that a similar quantity,

namely, the minimum gap between subspaces, appears in the control systems

literature, see, e.g., [67].

Lemma 4.3.9. Let V ⊂ Rdx and W ⊂ Rdx be such that V ⊕ W = Rdx . If

{0} ≠ V ⊂ Rdx and {0} ≠ W ⊂ Rdx , we denote the cosine between those two

spaces by cos(V,W ) := max{|⟨v, w⟩| : v ∈ V,w ∈ W, |v| = 1, |w| = 1}. If

either V = {0} or W = {0}, then we define cos(V,W ) := 0. Let P ∈ Md×d

be projection matrix such that Px = x when x ∈ V , and Px = 0 when

x ∈ W . Then, ∥P∥ = (1 − cos2(V,W ))−1/2, if V ̸= {0}, and ∥P∥ = 0,

otherwise.

Thus, we see that Assumption 4.3.2 implies that the cosine between the

controllable subspace of the active mode at time τk, i.e., ⟨Aσ(τk)|Bσ(τk)⟩, and
its complement space, W̄k ⊕ W̃k, is uniformly far from 1 for all k ∈ R. Note

that the cosine between two subspaces will only equal 1 if one is contained

in the other. Thus, these inequalities ensure that ⟨Aσ(τk)|Bσ(τk)⟩ and its

complement space W̄k ⊕ W̃k will not collapse into each other as k goes to

infinity.

We finally present Example 4.3.10, which should help the reader under-

stand the construction described in Definition 4.3.7 regarding compatible

projection matrices. Also, we explain the interpretation of Assumption 4.3.2

in terms of angles between subspaces using the result from Lemma 4.3.9.

Example 4.3.10. Let ℓ = 5, let the sampling times be τn = 2.5n for each

n ∈ Z≥0, and let Rc = {n ∈ Z≥0 : n mod ℓ ∈ {1, 3, 4}} be the generalized set

of losses. We see that the definition of Rc is compatible with the switching

signal σ(·) we defined. Indeed, we see that S = {n ∈ Z≥0 : n mod ℓ ∈ {1, 3}}.
Thus, we can also infer that the losses occur at each sampling time τn such

that n mod ℓ = 4. We consider system (4.1) with two modes described as

follows: mode 1 is such that A1 =

(
1 −1

2 −2

)
and B1 = (1, 1)′, and mode 2
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is such that A2 =

(
2 0

0 1

)
and B2 = (1, 0)′. Let t2n+1 = 3.5 + 12.5n and

t2n+2 = 8 + 12.5n for each n ∈ Z≥0 be switching times. We assume that the

switching signal σ : R≥0 → [2] is such that22 σ(t) = 1 for t ∈ [t2n+1, t2n+2)

and σ(t) = 2 for t ∈ [τℓn, t2n+1) ∪ [t2n+2, τℓ(n+1)) for each n ∈ Z≥0. Note that

τℓn+2 ∈ [t2n+1, t2n+2).

To continue our construction, we must first compute the spaces Vk for each

k ∈ Z≥0. In what follows, we assume that the claims hold for any n ∈
Z≥0. When k = ℓn, we know that σ(τℓn) = 2. This implies that Vℓn =

Φ−1
σ (τℓn, τℓn)⟨A2|B2⟩ = ⟨A2|B2⟩ = span{(1, 0)′}. When k = ℓn + 2, we also

know that σ(τℓn+2) = 1. This implies that Vℓn+2 = Φ−1
σ (τℓn+2, τℓn)⟨A1|B1⟩ =

e−3.5A2e−1.5A1⟨A1|B1⟩ = e−3.5A2⟨A1|B1⟩ = e−3.5A2span{(1, 1)′} =

span{(e−3.5, 1)′}. We note that, when k = ℓn+1, or k = ℓn+3, or k = ℓn+4,

we have that k ∈ Rc. Thus, we have that Vℓn+1 = Vℓn+3 = Vℓn+4 = {0}.
Further, notice that

∑ℓ(n+1)−1
j=ℓn Vj = R2, which implies that our system is

ℓ−uniform completely controllable with losses in Rc. Next, we construct the

oblique projection matrices. We note that we have Pℓn+1 = Pℓn+3 = Pℓn+4 =

0 by the fact that all such indices belong to the generalized set of losses Rc.

To deal with the cases when k = ℓn and k = ℓn+2, we must first construct the

spaces W̄k and W̃k. When k = ℓn, we choose W̄ℓn to be an arbitrary subspace

of R2 such that ⟨Aσ(τℓn)|Bσ(τℓn)⟩⊕W̄ℓn = Φ−1
σ (τℓn, τℓn)

∑ℓ(n+1)−1
j=ℓn Vj = R2. We

can choose, for instance, W̄ℓn = span{(1, 2)′}. In this case, W̃ℓn = {0}, since
W̃ℓn ∩ (⟨Aσ(ℓn)|Bσ(ℓn)⟩ ⊕ W̄ℓn) = {0} by the definition of direct sum. With

these choices, we get that Pℓn =

(
1 −0.5

0 0

)
. When k = ℓn+ 2, we choose

W̄ℓn+2 to be an arbitrary subspace of R2 such that ⟨Aσ(τℓn+2)|Bσ(τℓn+2)⟩ ⊕
W̄ℓn+2 = Φ−1

σ (τℓn+2, τℓn)
∑ℓ(n+1)−1

j=ℓn+2 Vj = ⟨A1|B1⟩ = span{(1, 1)′}. Hence,

W̄ℓn=2 = {0}, and there are no further choices in this case. Finally, we

choose W̃ℓn+2 as some subspace of R2 such that ⟨A1|B1⟩ ⊕ W̄ℓn+2 ⊕ W̃ℓn+2 =

R2. We can choose W̃ℓn+2 = span{(1, 0)′} to get the projection matrices

Pℓn+2 =

(
0 1

0 1

)
.

The purpose of Figure 4.1 is to help us understand the concepts introduced

so far. For each sampling time τk with k ∈ {ℓn, . . . , ℓ(n + 1)} we draw a

copy of the state space R2. In the copy at time τk, we draw the controllable

22We chose a periodic switching signal for simplicity. In this case, the period is 12.5.
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subspace ⟨Aσ(τk)|Bσ(τk)⟩ of mode σ(τk), i.e., the controllable subspace of the

mode that is active at the sampling time τk. If n ∈ R, we use the color

black for the sampling time and the controllable subspace, as is the case of

k = ℓn, k = ℓn+ 2, and k = ℓn+ 5. If k ∈ Rc, as in the case of k = ℓn+ 1,

k = ℓn+ 3, and k = ℓn+ 4, we use the color orange. Also, we use the color

red to represent the switching times t2n+1 and t2n+2.

tτℓn τℓn+2 τℓ(n+1)τℓn+1 τℓn+3 τℓn+4t2n+1 t2n+2

⟨A2|B2⟩ ⟨A1|B1⟩ ⟨A2|B2⟩⟨A2|B2⟩ ⟨A1|B1⟩ ⟨A2|B2⟩

x2

x1

Figure 4.1: Subspaces and sampling times.

There are a few important things to notice in Figure 4.1. First, on the time

interval [τℓn, τℓn+1), system (4.1) behaves as the LTI system ẋ(t) = A2x(t) +

B2u(t) and the controllable subspace is one-dimensional. This implies that

we cannot send the state to zero at time τℓn+1. Second, we assume that

u(t) = 0 for t ∈ [τℓn+1, τℓn+2) ∪ [τℓn+3, τℓn+4) ∪ [τℓn+4, τℓn+5) because those

sampling time indices belong to the generalized set of losses Rc. Third,

note that our system behaves as the LTI system ẋ(t) = A1x(t) + B1u(t)

on the time interval [τℓn+2, τℓn+3). Consequently, if x(τℓn) ̸= 0 and if we

impose our previous assumption on u(t), we can only have x(τℓn+5) = 0

when x(τℓn+2) ∈ ⟨A1|B1⟩. To do that, we must decompose state x(τℓn) into

a component that belongs to Vℓn = ⟨A2|B2⟩, which we can send to zero on

the time interval [τℓn, τℓn+1], and another which we can send to zero on the

time interval [τℓn+2, τℓn+3]. This second component must lie on the vector

subspace Vℓn+2 = Φ−1
σ (τℓn+2, τℓn)⟨A1|B1⟩ since this vector space is mapped

into the vector space ⟨A1|B1⟩ at time τℓn+2. To perform this decomposition,

we use the oblique projection matrices. More explicitly, we can write x(τℓn) =

Pℓnx(τℓn) + (I2 −Pℓn)x(τℓn), where the first term belongs to ⟨A2|B2⟩ and the

second term belong to the nullspace of23 Pℓn. Note that W̄ℓn ⊕ W̃ℓn is the

23This follows from P (Id − P )x = (P − P 2)x = 0 for any projection matrix P and any
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nullspace of Pℓn by definition 4.3.7. Our previous discussion tells us that

W̄ℓn ⊕ W̃ℓn = Φ−1
σ (τℓn+2, τℓn)⟨A1|B1⟩. This implies that, at time τℓn+2, the

component (I2 −Pℓn)x(τℓn) will belong to the subspace Φσ(τℓn+2, τℓn)(W̄ℓn ⊕
W̃ℓn) = ⟨A1|B1⟩. These concepts are depicted in Figure 4.2 where we show

the state at time τℓn and the state at time τℓn+2 as red arrows. As we can

see, the state at time τℓn+2 lies in ⟨A1|B1⟩.

tτℓn τℓn+1 τℓn+2

x̄ℓn

x̃ℓn

Vℓn = ⟨A2|B2⟩

Vℓn+2 = Φ−1
σ (τℓn+2, τℓn)⟨A1|B1⟩

Φ−1
σ (τℓn+2, τℓn)

x(τℓn+2)

⟨A1|B1⟩

x(τℓn)

Φσ(τℓn+2, τℓn)

x2

x1

Figure 4.2: Vector spaces flown backwards.

More explicitly, in Figure 4.2 we see the previously mentioned decomposition

of the state x(τℓn) at the time τℓn into components that lie on ⟨A2|B2⟩ and
Φσ(τℓn+2, τℓn)⟨A1|B1⟩, i.e., we can write x(τℓn) = x̄ℓn + x̃ℓn, where x̄ℓn =

Pℓnx(τℓn) and x̃ℓn = (Id − Pℓn)x(τℓn). Note that the component x̃ℓn ∈
Φ−1

σ (τℓn+2, τℓn)⟨A1|B1⟩ and that x̄ℓn ∈ ⟨A2|B2⟩.
Finally, we can now interpret Assumption 4.3.2 using the notion of angle

between subspaces. We note that, for each n ∈ Z≥0, we have that ∥Pℓn+1∥ =

∥Pℓn+3∥ = ∥Pℓn+4∥ = 0. Also, simple calculations show us that ∥Pℓn∥ =
√
5
2

and ∥Pℓn+2∥ =
√
2. Thus, if we pick g = max{

√
5
2

− 1,
√
2 − 1}, we arrive

at the conclusion that our system satisfies Assumption 4.3.2. It is worth

mentioning, that these norms depend on the choices of vector spaces W̄k

and W̃k for k ∈ R, as mentioned earlier. Indeed, for instance, we could have

chosen W̃ℓn+2 = span{(1, 1−1/n)′} for each n ∈ Z≥0. This would still give us

that ⟨A1|B1⟩ ⊕ W̄ℓn+2 ⊕ W̃ℓn+2 = R2. However, for this choice, a compatible

projection matrix would be P ′
ℓn+2 =

(
1− n n

1− n n

)
. Thus, no g ∈ R≥0 exists

vector x ∈ Rdx .

84



such that ∥P ′
ℓn+2∥ < (1+g) since ∥P ′

ℓn+2∥ goes to infinity as n goes to infinity.

This happens because the cosine between ⟨Aσ(τℓn+2)|Bσ(τℓn+2)⟩ = ⟨A1|B1⟩ and
span{(1, 1)′} goes to 1 as n grows. It is important to notice here that the

existence of this sequence of matrices is not in contradiction with Assumption

4.3.2 since the assumption only asks for the existence of a some sequence

(Pk)k≥0 ⊂ Md×d of compatible projection matrices with the property that

∥Pk∥ ≤ (1 + g).

4.3.6 Quantized Control Concepts

We start this subsection by defining the concept of coder-decoder/controller

scheme. These definitions are used in the description of Algorithm 4.4.1 and

the proof of Theorem 4.3.7. Also, we finally address the questions asked in

Example 4.2.3 about DoS attacks. Furthermore, we also formally define the

set L, which we used to define the set R in Subsection 4.2.3.

Definition 4.3.8 (coder-decoder/controller scheme).

A coder-decoder/controller scheme is defined by the following quantities:

• A sequence of sampling times (τn)n∈Z≥0
⊂ R≥0 where τ0 = t0;

• A sequence of finite cardinality sets (Cn)n∈Z≥0
where each element of

the sequence is called a coder alphabet ;

• A sequence of finite cardinality sets (Ĉn)n∈Z≥0
where each element of

the sequence is called a decoder alphabet ;

• A sequence of coder functions (γn)n∈Z≥0
such that γ0 : Rdx → C0 and

γn : C0 × · · · × Cn−1 × Rdx → Cn for each n ∈ Z>0;

• A sequence of channel functions (cn)n∈Z≥0
such that24 cn : Cn → Ĉn;

• A sequence of decoder functions (δn)n∈Z≥0
such that δn : Ĉ0×· · ·×Ĉn →

Rdx for each n ∈ Z≥0;

• A controller is a sequence of controller functions

(un)n∈Z≥0
⊂ L∞

loc([τn, τn+1)× Rdx ,Rdu).

24We could consider more general channel models, e.g., channels with memory. Nonethe-
less, we will not do this in this document.
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Additionally, we make the following definitions. The elements of a coder or

decoder alphabet are called symbols. Further, we assume that Ĉn = Cn ∪
{∅} where the special symbol ∅ is called the empty symbol. The remaining

symbols of a decoder alphabet are called the valid symbols. Furthermore,

we define the set L := {n ∈ Z≥0 : cn(q) = q for all q ∈ Cn}, i.e., the set

of indices n such that the corresponding channel function is the identity

function. If L = Z≥0 we say that our communication channel is lossless. If

n ∈ Lc, we say that we have a packet loss at the sampling time τn. Finally,

we define the received average data-rate of the coder-decoder scheme25 as

brx := lim supn→∞
1

τn−τ0

∑
k∈L∩[n]0

log
(
#Ck

)
.

A few remarks are in order. First, this definition was inspired by the

definition of coder-controller pair first presented in [68] to study the control

of stochastic linear systems under data-rate constraints. We also refer to the

survey paper [4] for a discussion about such schemes. The main difference

between the next definition and that of [68] is that we split our scheme into

coder, decoder, and controller instead of just coder and controller. Also,

we introduce the channel functions to deal with the issue of packet losses.

Second, in the information theory literature, see, e.g., the first three chapters

of [69], the channel function is treated as a random function in the sense that,

for each n ∈ Z≥0 and each q ∈ Cn, the value cn(q) is random. We do not treat

this case here. Third, we note that any control system that measures the

state using a digital sensor or analog-to-digital converter, can be described

using the previous definitions by suitably choosing the coder, channel, and

decoder functions. To do that, let q : R≥0×Rdx → D ⊂ Rdx be the quantizer,

where D is a set of finite cardinality of possible sensor outputs. Let the

sampling times be τk = Tc, where Tc ∈ R≥0 is the sensor’s clock frequency, for

each k ∈ Z≥0. We assume that the quantizer is a piecewise constant function

on its first argument in each interval of the form [τk, τk+1) for each k ∈ Z≥0.

In addition, let the alphabets be Cn = Ĉn = D for each n ∈ Z≥0. We

choose the functions from the coder-decoder/controller scheme as follows:

let26 γn(∗, . . . , ∗, x(τn)) = q(τn, x(τn)), cn(q) = q, and δn(∗, . . . , ∗, q) = q,

for each q ∈ Ĉn and each n ∈ Z≥0. Furthermore, if we apply a controller

u(·, ·) ∈ L∞
loc([t0,∞)× Rdx ,Rdu), then, we can define a sequence of controller

25We note that the data-rate does not depend on the controller explicitly.
26The symbol ∗ as an argument for a function means that the function is constant in

that argument.
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functions (un)n∈Z≥0
such that un(t, ·) = u(t, ·) for t ∈ [τn, τn+1) for each

n ∈ Z≥0. This construction tells us that we can associate a notion of data-

rate, given by brx, to any controller that uses digital sensors or analog-to-

digital converters in a natural way.

Now, we are ready to illustrate the concepts developed thus far by answer-

ing the questions posed in the motivating Example 4.2.3.

Example 4.3.11 (Example 4.2.3 continued). For simplicity, we assume that

the switchings are synchronous. Thus, as we discussed earlier in this subsec-

tion, we only need to check Assumption 4.3.1 for Theorem 4.3.7 to hold. Now,

assume that there exists ℓ ∈ Z>0 such that in each time interval of the form

[τℓn, τℓ(n+1)) we have at least one subinterval [τk, τk+1) with k ∈ R. Since all

modes are controllable, we have that Equation (4.9) holds for each n ∈ Z≥0.

Hence, our system is ℓ−uniformly completely controllable and Theorem 4.3.7

holds. This implies that we can send the state of our switched linear system

to zero even in the presence of a DoS attack that satisfies this condition.

Note that, we are imposing a constraint on the attack duration and on the

frequency at which such attacks occur. See, e.g., [61] for a discussion on why

imposing such constraints is reasonable.

4.3.7 The Gap Between the Conditions

Now, we discuss the gap between the necessary condition given by Theorem

3.3.6 and the sufficient condition when no packet losses are present. We

argue that, although those conditions are “close”, the sufficient condition is

not necessary.

We see that the difference between the assumptions of Theorem 3.3.6

and 4.3.2 is just uniformity. It seems natural to ask if the sufficient con-

dition is actually necessary. The answer is negative as Example 4.3.12

shows. Before we formally state that example, we take this opportunity

to recall some concepts and results presented in [53]. We recall that sys-

tem (4.1) is called persistently completely controllable if there exists an in-

creasing sequence of times (sn)n∈Z≥0
⊂ [t0,∞) such that s0 = t0, that

limn→∞ sn = ∞, that lim supn→∞
sn+1

sn
< ∞, and that W (sn+1, sn) is in-

vertible for each n ∈ Z≥0. We also recall that system (4.1) satisfies the

exponential energy-growth condition if there exist constants N ∈ R>0 and
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θ ∈ R≥0 such that ∥W−1(sn+1, sn)∥ ≤ Neθsn+1 for each n ∈ Z≥0. The latter

condition is related to the minimum control energy needed to drive the state

x(sn) at time sn to zero at time sn+1 for each n ∈ Z≥0. We refer to [53] for

a discussion on this latter point. Now, Theorem 3.1 from [53] says that if an

LTV system is persistently completely controllable and satisfies the exponen-

tial energy-growth condition, then it is controllable with a finite data-rate.

We use this result in our next example to show that UCC is not a necessary

condition.

Example 4.3.12. Let t0 = 2 and consider the equation ẋ(t) = bσ(t)u(t) with

bσ(t) = 1, when t ∈ ∪n≥1[2
n, 2n + 1), and bσ(t) = 0, otherwise. We claim

that this system is controllable with a finite data-rate but it is not UCC.

We start by choosing a sequence (sn)n∈Z≥0
⊂ [2,∞) such that sn = 2n+1

for n ∈ Z≥0. Naturally, (sn)n∈Z≥0
is an increasing sequence that grows to

infinity. Also, we have that lim supn→∞
sn+1

sn
= 2. Further, for each n ∈ Z≥0,

on the interval [2n+1, 2n+2), we have that bσ(t) = 1 only on the time subinterval

[2n+1, 2n+1+1) and bσ(t) = 0 for the remainder of the total interval. Therefore,

we get that W (sn+1, sn) =
∫ sn+1

sn
b2σ(τ)dτ =

∫ 2n+1+1

2n+1 1dτ = 1 for each n ∈ Z≥0,

i.e., W (sn+1, sn) is invertible for each n ∈ Z≥0. Finally, we can easily see

that |W−1(sn+1, sn)| = 1 for every n ∈ Z≥0, which implies that our system

satisfies the exponential energy-growth condition with N = 1 and θ = 0.

Thus, our system satisfies all the conditions for Theorem 3.1 from [53] to

hold. We therefore conclude that this system is controllable with a finite

data-rate. Nonetheless, this system is not UCC. To see that, note that for

every T ∈ R>0 there exists some n ∈ Z≥0 so that W (sn + 1 + T, sn + 1) = 0.

Indeed, this follows from the fact that bσ(t) = 0 for all t ∈ [sn+1, sn+1+T )

if T < 2n+1 − 1 since sn + 1 + T < 2n+2. This proves the claim.

As we can see, in Chapter 3, we work with a more general class of systems,

i.e., general LTV systems, and we obtain a sufficient condition that works in

more general settings than the one we present in Theorem 4.3.2. Hence, one

might ask why we need a new chapter to study a more restrictive class of

systems and even obtain more restrictive results. We note two main differ-

ences between those results, which should justify the relevance of the results

from the present chapter. First, the sufficient condition from Chapter 3 has

no clear geometric interpretation. In the switched case, however, we can

attribute a geometric meaning related to the controllable subspaces of the
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modes to our sufficient conditions. We note that we can check Assumption

4.3.1 using Equation (4.9), and we recall that we have already discussed the

geometrical interpretation of Assumption 4.3.2. Thus, the conditions from

Theorem 4.3.2 are geometric, whereas Theorem 3.3.5 has no natural geo-

metric interpretation. We should not expect a geometric characterization of

this latter property for general LTV systems since these systems do not keep

nonzero subspaces of Rdx invariant over any time interval. A switched linear

system, however, behaves as an LTI system between two consecutive switch-

ings, thus allowing us to analyze controllability properties using each mode’s

controllable subspace. Indeed, this geometric characterization allowed us

find easy conditions for controllability with a finite data-rate, as we present

in the Subsection 4.3.3. Second, in the present chapter, we allow for packet

losses in Theorem 4.3.7, which is not a case we consider in Chapter 3. Thus,

we cannot draw a fair comparison between those two cases when losses are

present.

In the next section, we design a control law that works with a finite data-

rate. Also in that section, we prove properties of such control law and we

use such controller to prove Theorem 4.3.7.

4.4 Controller Design

In this section, we present an algorithm that, under Assumptions 4.3.1 and

4.3.2, designs a control law that will be used in proving Theorem 4.3.7. First,

we present a high-level description of how our algorithm works and, to make

the concepts clear, we illustrate that idea with a figure. Then, we formally

describe the algorithm. After that, we prove its correctness in Proposition

4.4.4. Finally, we present the proof of Theorem 4.3.7.

4.4.1 Algorithm’s Idea

Here, we describe the high-level idea of our control algorithm. We do that

inductively and with the help of Figures 4.4 and 4.3. We use Figure 4.3

to describe what happens between two consecutive sampling times and we

use Figure 4.4 to explain the working mechanism behind our algorithm. Be-

fore we begin, we need to introduce some additional notation. Let x(t) :=
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ϕ(t, t0, x0, u(·)), where u(·) is the control given by our algorithm.27 Next,

let q0 := γ0(x(τ0)) and let qk := γk(q0, . . . , qk−1, x(τk)) for each k ∈ Z>0.

Analogously, we define q̂0 := c0(q0) and q̂k := ck(qk) for each k ∈ Z>0. Then,

we define the k-th state estimate as x̂(τk) := δk(q̂0, . . . , q̂k) and the k-th

estimation error e(t) := δk(c0(q0), . . . , ck(qk)) − x(t) for each t ∈ [τk, τk+1)

and each k ∈ Z≥0. Further, let ℓ ∈ Z>0 be such that system (4.1) satisfies

the assumptions from Theorem 4.3.7, let k ∈ Z≥0, and let n = n(k) = ⌊k
ℓ
⌋.

Furthermore, let α ∈ R≥0 be a prescribed exponential rate of decay and let

ϵ ∈ R>0. Now we have all quantities we need to describe the algorithm’s idea.

At time τk, for an arbitrary k ∈ Z≥0, we assume that our system’s state

x(τk) belong to a compact set Bk ⊂ Rdx , which is an overapproximation to

the reachable set such that 0 ∈ Bk. The set Bk, by its turn, is the union of

several disjoints subsets called the quantization regions. Each quantization

region corresponds to a symbol in the coding alphabet Ck. We denote by B̄k

the quantization region that contains x(τk) at time τk and its corresponding

symbol is qk. Informally, we say that we measure the state x(τk) and the

encoder encodes that measurement as the symbol qk. The symbol qk is

transmitted over the communication channel, and the symbol q̂k arrives at

the decoder28 at time τk. Then, q̂k is converted by the decoder into a state

estimate x̂(τk). Next, we implement a control law uk(·, Pkx̂(τk)) that drives

the compatible projection of our state estimate, i.e., Pkx̂(τk), to zero over

the time interval [τk, τk+1). We repeat this procedure for all k ∈ Z≥0.

On the left of Figure 4.3, we see the set Bk subdivided into squares. Each

one of the squares represents a quantization region. The state x(τk) at time

τk is represented by a red dot, and the state estimate x̂(τk) is represented

by a blue dot. The state estimate is always at the center of a quantization

region. The origin is represented by the black dot in the center of Bk. When

we apply the control law uk(t, Pkx̂(τk)), our system follows the red trajectory

and lands on the set Bk+1 at time τk+1, i.e., x(τk+1) ∈ Bk+1, which we can

see represented on the right side of Figure 4.3. Then, we repeat the process

for k + 1.

27To be precise, we only need the restriction of u(·) to the time interval [t0, t). We make
this remark to emphasize that our algorithm is causal.

28We assume that there is no communication delay.
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Bk

t = τk

Bk+1

t = τk+1

Figure 4.3: Quantization region and state trajectory.

On Figure 4.4, once again we consider the system we described in Example

4.3.10. We analyze the time interval [τℓn, τℓ(n+1)) for some n ∈ Z≥0. As before,

we see several copies of the state space R2 at each sampling time. As in Fig-

ure 4.3, we represent the origin as a black dot and the state at time τk by the

red dot for each k ∈ {ℓn, . . . , ℓ(n+ 1)}. At time τℓn, we see a dashed region,

which represents Bℓn. At time τℓn+1, however, the dashed region depicts a

subset of Bℓn+1. To explain what set that dashed represents, we first need to

understand what the control is doing. We start by assuming that there is no

estimation error, i.e., x(τk) = x̂(τk) for k ∈ Z≥0, and we drop that assumption

later in our discussion. Our goal is to drive x(τℓn) to zero. Nevertheless, we

know that we cannot do that on the time interval [τℓn, τℓn+1) since the control-

lable subspace of the active mode on that interval is ⟨A2|B2⟩ = span{(1, 0)′},
which is a proper subspace of R2. We can, nonetheless, drive the compatible

projection Pℓnx(τℓn) to zero, which is what the control uℓn(·, Pℓnx(τℓn)) does.

This leads us to the conclusion that x(τℓn+1) ∈ Φσ(τℓn+1, τℓn)(
∑ℓ(n+1)−1

j=ℓn+1 Vj) =

Φσ(τℓn+1, τℓn)(Φ
−1
σ (τℓn+2, τℓn)⟨A1|B1⟩) = Φ−1

σ (τℓn+2, τℓn+1)⟨A1|B1⟩, which is a

one-dimensional subspace of the state space R2. Now, due to quantization,

the estimation error is nonzero in general. Because of that, we have that

x(τℓn+1) belong to the εℓn+1−collar of the set Φ−1
σ (τℓn+2, τℓn+1)⟨A1|B1⟩) for

some29 εℓn+1 ∈ R>0. In other words, we drive the state to an approximation

of the subspace Φ−1
σ (τℓn+2, τℓn+1)⟨A1|B1⟩, i.e., x(τℓn+1) ∈

(Φ−1
σ (τℓn+2, τℓn+1)⟨A1|B1⟩))εℓn+1 .We see this latter fact in Figure 4.4 repre-

sented by the fact that the dashed region at time τℓn+1 shrinks along the

29We give a precise value for each εk in the proof of Proposition 4.4.4, for each k ∈ Z≥0.
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direction of the subspace ⟨A2|B2⟩. More precisely, the dashed region at time

τℓn+1 represents the set B
ℓn+1∩(Φ−1

σ (τℓn+2, τℓn+1)⟨A1|B1⟩)εℓn+1 . The same rea-

soning holds for the other time intervals [τk, τk+1) for k ∈ {ℓn+2, . . . , ℓn+4}.
We finally notice that, if the diameter of Bℓ(n+1) decreases exponentially with

n, we can ensure that the sate decays exponentially fast. We explain, in the

next subsection 4.4.2, how to choose our algorithm parameters so that we

achieve an exponential decays with a prescribed exponential decay rate.

Remark 4.4.1. It is worth mentioning that the idea of driving the center

of a quantization region to zero is not new. In [5], the author did something

similar for discrete-time linear time-invariant systems. In the proof of his

Proposition 2.2, we see that he designed a control sequence that steers the

center of a quantization region to its corner. The goal was to drive the state to

a neighborhood of the origin and keep it there. In some sense, our algorithm

builds on that idea to design a controller that operates with a finite data-

rate for switched linear systems. However, we also need to emphasize some

differences here. The fact that we work in continuous time complicates the

analysis. Indeed, when we deal with sampled continuous-time systems, the

inter-sample growth of the state norm plays a prominent role in the controller

design [70, 71]. In fact, if system (4.1) was a discrete-time linear switched

system, we could simplify the proof of Proposition 4.4.4 by removing the

analysis of the inter-sample behavior, which we use to prove Theorem 4.3.7.

It is important to note that Assumption 4.3.2 is only used in the inter-sample

behavior analysis. Thus, the discrete-time case is simpler to analyze.

tτℓn τℓn+1 τℓn+2 τℓn+3 τℓn+4 τℓ(n+1)t2n+1 t2n+2

⟨A2|B2⟩ ⟨A2|B2⟩ ⟨A1|B1⟩ ⟨A1|B1⟩ ⟨A2|B2⟩ ⟨A2|B2⟩

x2

x1

Figure 4.4: Algorithm’s Idea.

Before we resume our discussion, we need the following technical lemma,

which we prove in Appendix A.13.

92



Lemma 4.4.2. Let k ∈ R. If x(τk) ∈ ⟨Aσ(τk)|Bσ(τk)⟩, then there exists some

uk(·, ·) ∈ L∞
loc([τk, τk+1)× Rdx ,Rdu) such that x(τk+1) = 0 and such that

uk(t, x) = Fσ(τk)x (4.10)

for each t ∈ [τk, τk+1) and some Fσ(τk) ∈ Md×m that only depends on the

active mode at time τk.

Now, we are ready to formally present our control algorithm.

4.4.2 Algorithm’s Formal Description

Algorithm 4.4.1. We denote the canonical basis in Rdx , where the matrices

Ai and Bi are defined for every i ∈ [m], by V0 = {e1, . . . , edx}. For conve-

nience, we denote xk := x(τk) for n ∈ Z≥0. Prescribe a parameter ϵ ∈ R>0

and an exponential decay rate α ∈ R≥0. Also, we can precompute the quanti-

ties: η := max{∥Ai∥ : i ∈ [m]}, eηTp , and b := max{∥Bi∥ : i ∈ [m]}. Further,
for each mode i ∈ [m], we can precompute: the matrix eAiTp and the matrix

measure µ(Ai). Furthermore, we can define and compute Ji := eηTp for each

i ∈ [m]. Finally, choose ϵ ∈ R>0 and a prescribed exponential decay rate

α ∈ R≥0.

i) Coder Side:

Online at time τ0:

We describe the coder function at time τ0 (γ0 : K → C0):

• Define the overapproximation of the initial set at time τ0 as

B0 := K; (4.11)

• Define the constants30 κ0
i := min{⟨x, ei⟩ : x ∈ K} and κ0

i :=

max{⟨x, ei⟩ : x ∈ K} for every i ∈ [dx];

• Define the quantity Γ0
i := ϵ

dx
and a set of positive integers C0

i :={
1, . . . , ⌈κ0

i−κ0
i

Γ0
i

⌉
}

for every i ∈ [dx]. Further, we define the set of

30Note that, if K is a box, i.e., a set of the form {x ∈ Rdx : x =
∑dx

i=1 ciei, ci ∈ [ai, bi]}
where ai ∈ R and bi ∈ R with bi > ai for each i ∈ [dx], then this optimization problem
becomes one of checking the values of that inner product at the vertices of that box.
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quantization symbols at time τ0 to be

C0 := C0
1 × · · · × C0

dx ; (4.12)

• Define the i-th quantization symbol at time τ0, i.e. the quantization

symbol related to the projection of the initial state into the vector

space span{ei} by

q0i (x0) := {p ∈ C0
i : κ0

i + Γ0
i (p− 1) ≤ ⟨x0, ei⟩ < κ0

i + Γ0
i p} (4.13)

for each i ∈ [dx]. Further, if 0 ∈ R, we define the quantization

region that contains x(τ0) at time τ0 as

B̄0 := {x ∈ Rdx : κ0
i + Γ0

i (q
0
i (x0)− 1) ≤ ⟨x, ei⟩

< κ0
i + Γ0

i q
0
i (x0) for each i ∈ [dx]}, (4.14)

and B̄0 := B0, otherwise;

• Define the coder function γ0 : K → C0 at step zero as

γ0(x0) = (q01(x0), . . . , q
0
dx(x0)). (4.15)

Online at time τk with k ∈ Z>0:

We describe the coder function at time τk (γ
k : Bk×C0×· · ·×Ck−1 → Ck):

• If n ∈ R, then we define the overapproximation to the reachable

set at time τk as

Bk := {x ∈ Rdx : x = eAσ(τk)Tpy+

+

∫ Tp

0

eAσ(τk)(Tp−τ)Bσ(τk)uk(τ, ŷk−1)dτ, y ∈ B̄k−1}. (4.16)

If n ̸∈ R, then we define the overapproximation to the reachable

set at time τk as

Bk := {x ∈ Rdx : |x− x̂(τk−1)| ≤ Jσ(τk)|x̂(τk−1)|+

+eηTp
√

dx max{Γk−1
i : i ∈ [dx]}}; (4.17)
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• Define the constants

κk
i := min{⟨y, ei⟩ : y ∈ Bk} (4.18)

κk
i := max{⟨x, ei⟩ : x ∈ Bk} (4.19)

for every i ∈ {1, . . . , d};

• Define the constant Γk
i := e−αTpΓk−1

i . Also, define a set of positive

integers Ck
i :=

{
1, . . . , ⌈κk

i −κk
i

Γk
i

⌉
}
for each i ∈ [dx] and each n ∈ Z≥1.

Further, we define the set of quantization symbols at time τk to be

Ck := Ck
1 × · · · × Ck

d ; (4.20)

• Define the quantized value of the i−th projection of the state at

time τk into the vector space span{ei} by

qki (xk) := {p ∈ Ck
i : κk

i + Γk
i (p− 1) ≤ ⟨xk, ei⟩ < κk

i + Γk
i p} (4.21)

for each i ∈ [dx]. Further, if k ∈ R, we define the quantization

region that contains x(τk) at time τk as

B̄k := {x ∈ Rdx : κk
i + Γk

i (q
k
i (xk)− 1) ≤ ⟨x, ei⟩

< κk
i + Γk

i q
k
i (xk) for each i ∈ [dx]}, (4.22)

and B̄k := Bk, otherwise;

• Define the coder function γk : Bk ×C0 × · · · × Ck−1 → Ck at step n

as

γk(xk) := (qk1(xk), . . . , q
k
dx(xk)). (4.23)

ii) Decoder/Controller Side:

Online at time τ0:

We describe the decoder function at time τ0 (δ0 : C0 → B0):

• Compute the same constants κ0
i and κ0

i for every i ∈ [dx] as in the

coder side. Also, compute the quantization region B̄0;

• If k ∈ R, define the quantized value of the i−th projection of the
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initial state into the vector space span{ei} at time τ0 by

β̂0
i (x0) := κ0

i + Γ0
i

(
q0i (x0)− 1/2

)
(4.24)

for each i ∈ [dx], i.e., the midpoint of the interval31 κ0
i +Γ0

i (q
0
i (x0)−

1) ≤ ⟨x, ei⟩ < κ0
i + Γ0

i q
0
i (x0).

If k ̸∈ R, define β̂0
i (x0) := 0 for each i ∈ [dx];

• Define the state estimate at time τ0 as

x̂(τ0) :=
dx∑
i=1

β̂0
i (x0)ei. (4.25)

Furthermore, we define the decoder at time τ0 as δ0(q0) := x̂(τ0);

We describe the controller function (u0 : B
0 × [τ0, τ1) → Rdu):

• Define the control law on the time interval [τ0, τ1) as

u0(x̂(τ0), t) = Fσ(τ0)(t− τ0)x̂(τ0). (4.26)

Online at time τk with n ∈ Z>0:

We describe the decoder at time τk (δk : C0 × · · · × Ck → Bk):

• Define the quantization regions on the decoder side as in the coder

side, i.e., using Equations(4.18) and (4.19). Also, compute B̄k;

• If k ∈ R, define the value of the projection of the state at time τk

into the vector space span{ei} by32

β̂k
i (xk) := κk

i + Γk
i (q

k
i (xk)− 1/2) (4.27)

for each i ∈ [dx].

If k ̸∈ R, define β̂k
i (xk) := 0;

• Define the state estimate at time τk as

x̂(τk) :=
dx∑
i=1

β̂k
i (xk)ei. (4.28)

31Note that |⟨x0, ei⟩ − β̂0
i (x)| ≤ Γ0

i /2.
32Note that |⟨xk, ei⟩ − β̂k

i (xk)| ≤ Γk
i /2.
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Furthermore, we define the decoded value of xk as

δk(γ0(x0), . . . , γ
k(xk)) := x̂(τk);

We describe the controller function (uk : B
k × [τk, τk+1) → Rdu):

• Define the projection of the state estimate x̂(τk) at time τk as

ŷ(τk) := Pkx̂(τk). (4.29)

• Define the control law for t on the time interval [τk, τk+1) as

uk(x̂(τk), t) = Fσ(τk)(t− τk)ŷ(τk). (4.30)

4.4.3 Controller Analysis

In this subsection, we prove Proposition 4.4.4. This lengthy result will be

used in the proof of Theorem 4.3.7 in the next subsection. Also, this result

can be seen as the proof of correctness of our Algorithm 4.4.1. We start

by stating the simple technical Lemma 4.4.3, whose proof can be found in

Appendix A.14.

Lemma 4.4.3. Let (yk)k∈Z≥0
⊂ R≥0, a ∈ R>0, and b ∈ R≥0. If yk+1 ≤ ayk+b

for each k ∈ Z≥0, then we have that yk ≤ aky0+ba
k−1
a−1

holds for each k ∈ Z≥0.

Now, we are ready to state our proposition.

Proposition 4.4.4. Let the Assumptions 4.3.1 and 4.3.2 hold for some

ℓ ∈ Z>0 and g ∈ R≥0, respectively. Let (e(τn))n∈Z≥0
be the sequence

of state estimation errors produced by Algorithm 4.4.1. Then, the coder-

decoder/controller scheme described in Algorithm 4.4.1 ensures that there

exist constants M ∈ R>0 and P ∈ R>0 such that the solution to (4.1) satis-

fies

|x(t)| ≤ M |x0|χ{s∈R≥0:τℓ−s>0}(t) + P∥e|[ℓ(n−2),ℓn]∥∞, (4.31)

where n̄ := ⌈ t−τ0
ℓTp

⌉, x0 = x(τ0), and ∥e|[a,b]∥∞ := max{sup{|e(t)| : t ∈
[τk, τk+1)} : k ∈ {a, . . . , b− 1}} for a ∈ Z≥0, b ∈ Z≥0, and b > a.

Proof. For k ∈ Z≥0, let n ∈ Z≥0 be n = n(k) := ⌊k
ℓ
⌋ and note that this

implies that τk ∈ [τℓn, τℓ(n+1)). Also, let εnℓ := 0 for n ∈ Z≥0 and εk+1 :=

ϵe−ηTp(εk + g|e(τk)|) for each k ∈ Z≥0 such that k ̸= nℓ− 1 for any n ∈ Z≥0.
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We split this proof into four parts.

Part 1: Analysis of the state at times τk for k ∈ Z≥0. In this part, our

goal is to prove that33

x(τk) ∈
(
Φ(τk, τℓn)

ℓ(n+1)−1∑
j=k

Vj

)εk (4.32)

for each k ∈ Z≥0. We do that by induction over k ∈ Z≥0. Before we proceed

to prove this fact, we note that we can write

x(τk+1) = Φ(τk+1, τk)x(τk) +

∫ τk+1

τk

Φ(τk+1, τ)Bσ(τ)u(τ)dτ, (4.33)

by the the variation of constants formula applied to system (4.1) with initial

state x(τk) at the initial time τk when we apply the control u(·). Now, we

are ready to prove our induction step

Step 0: note that Assumption 4.3.1 implies that
(∑ℓ(n+1)−1

j=ℓn Vj

)εnℓ

= Rd.

So, x(τℓn) ∈
(∑ℓ(n+1)−1

j=ℓn Vj

)εnℓ

for each n ∈ Z≥0, which implies that our

hypothesis is correct for k = ℓn for any n ∈ Z≥0. In particular, this proves

the base case x(τ0) ∈ Rd. Furthermore, by the same reasoning, we conclude

that we only need to study the cases when k ̸= ℓn for any n ∈ Z≥0 to

complete our proof.

Step k + 1 ∈ Z≥1: as we noted in step 0, we can assume that k ̸= ℓn − 1

for any n ∈ Z≥0. Further, recall that our induction hypothesis gives us that

x(τp) ∈
(
Φ(τk, τℓn)

∑ℓ(n+1)−1
j=p Vj

)εp
for all integers p ≤ k.

Now, let P̄k ∈ Md×d be the orthogonal projection matrix over the subspace

Φ(τk, τℓn)
∑ℓ(n+1)−1

j=k+1 Vj. We note that we can write

x(τk) = Pkx(τk) + (Idx − Pk)x(τk)

= Pkx(τk) + P̄k(Idx − Pk)x(τk) + (Idx − P̄k)(Idx − Pk)x(τk),

where Pkx(τk) ∈ Φ(τk, τℓn)Vk and P̄k(Idx −Pk)x(τk) ∈ Φ(τk, τℓn)
∑ℓ(n+1)−1

j=k+1 Vj

by how we constructed the matrices Pk and P̄k. To make our discussion

simpler, we define y(τk) := Pkx(τk), z(τk) := P̄k(Idx −Pk)x(τk), and w(τk) :=

(Idx − P̄k)(Idx − Pk)x(τk). We notice that |w(τk)| ≤ εk since our induction

hypothesis tells us that x(τk) ∈
(
Φ(τk, τℓn)

∑ℓ(n+1)−1
j=k Vj

)εk and y(τk)+z(τk) ∈

33Recall that Aε is the ε-collar of the set A ⊂ Rdx .
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Φ(τk, τℓn)
∑ℓ(n+1)−1

j=k Vj.

Recall that we use Equations (4.26) and (4.30) to define the control sequence

(uk(·, ·))k∈Z≥0
. Also recall that, when k ∈ R, Lemma 4.4.2 gives us that

−Φσ(τk+1, τk)y =
∫ τk+1

τk
Φσ(τk+1, τ)Bσ(τk)uk(y, τ)dτ for any y ∈ Rdx . Now, we

break our analysis into two cases:

Case of k ̸∈ R: In this case, uk(t) = 0 for all t ∈ [τk, τk+1). Thus, equation

(4.33) gives us that

x(τk+1) = Φ(τk+1, τk)x(τk) = Φ(τk+1, τk)
(
y(τk) + z(τk) + w(τk)

)
.

Since Vk = {0}, we have that y(τk) = 0. Further, recall that z(τk) ∈
Φ(τk, τℓn)

∑ℓ(n+1)−1
j=k+1 Vj. Therefore, we have that Φ(τk+1, τk)

(
y(τk) + z(τk)

)
∈(

Φ(τk+1, τℓn)
∑ℓ(n+1)−1

j=k+1 Vj

)
, since Φ(τk+1, τk)Φ(τk, τℓn) = Φ(τk+1, τℓn). Fur-

thermore, since |w(τk)| ≤ εk, we have that |Φ(τk+1, τk)w(τk)| ≤ eη(τk+1−τk)εk ≤
eηTp(εk + g|e(τk)|) = εk+1. This proves the induction step in this case.

Case of k ∈ R: In this case, equation (4.30) gives us that u(t) = Fσ(τk)(t−
τk)ŷ(τk). Further, since there are no switches on the time interval [τk, τk+1),

we have that Φ(τk+1, τ) = eAσ(τk)(τk+1−τ) and Bσ(τ) = Bσ(τk) for all τ ∈
[τk, τk+1). Combining these facts with equation (4.33), we get that x(τk+1) =

eAσ(τk)(τk+1−τk)
(
y(τk) + z(τk) + w(τk)

)
+
∫ τk+1

τk
eAσ(τk)(τk+1−τ)Bσ(τk)Fσ(τk)(τ −

τk)dτ ŷ(τk). Equation (4.10) gives us that
∫ τk+1

τk
eAσ(τk)(τk+1−τ)Bσ(τk)Fσ(τk)(τ −

τk)dτ ŷ(τk) = −eAσ(τk)(τk+1−τk)ŷ(τk).

Hence, we get that

x(τk+1) = eAσ(τk)(τk+1−τk)
(
y(τk)− ŷ(τk) + z(τk) + w(τk)

)
. (4.34)

Since z(τk) ∈ W̄k ⊂ Φ(τk, τℓn)
∑ℓ(n+1)−1

j=k+1 Vj, we conclude that

eAσ(τk)(τk+1−τk)z(τk) ∈
(
Φ(τk+1, τℓn)

ℓ(n+1)−1∑
j=k+1

Vj

)
.

Also, we note that |eAσ(τk)(τk+1−τk)
(
y(τk)−ŷ(τk)

)
| ≤ eη(τk+1−τk)|y(τk)−ŷ(τk)| =

eη(τk+1−τk)|Pk(x(τk) − x̂(τk))| ≤ geη(τk+1−τk)|e(τk)| where the first inequality

follows from the fact that ∥eAσ(τk)(τk+1−τk)∥ ≤ eη(τk+1−τk) and that ∥ · ∥ is

an operator norm. The equality follows from equation (4.29). Finally, the

last inequality follows from |Pk| ≤ g, by our uniform complete controlla-
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bility with losses assumption, and our assumption that |x(τk) − x̂(τk)| ≤
|e(τk)|. Next, we proceed as before to get that |eAσ(τk)(τk+1−τk)w(τk)| ≤
eη(τk+1−τk)εk. Hence, combining these two inequalities, the fact that τk+1 −
τk ≤ Tp, and using the triangle inequality, we get that |eAσ(τk)(τk+1−τk)

(
y(τk)−

ŷ(τk) + w(τk)
)
| ≤ eηTp(εk + d|e(τk)|) ≤ εk+1. Thus, we get that x(τk+1) ∈(

Φ(τk+1, τℓn)
∑ℓ(n+1)−1

j=k+1 Vj

)
concluding the proof of Part 1.

Part 2: Analysis of the state at times τnℓ for n ∈ Z≥0. In this part,

our goal is to prove that

|x(τnℓ)| ≤ Emax{|e(τnℓ+j−1)| : j ∈ [ℓ]}, (4.35)

where E := geηTp 1−eηTpℓ

1−eηTp
. First, we claim that x(τnℓ−1) = y(τnℓ−1) +w(τnℓ−1),

i.e., z(τnℓ−1) = 0. Indeed, z(τnℓ−1) ∈
(
Φ(τnℓ, τℓn)

∑ℓ(n+1)−1
j=nℓ Vj

)
= {0}. Next,

we divide our analysis into two cases. If nℓ ̸∈ R, we know that y(τnℓ−1) ∈
{0}. Thus, equation (4.33) gives us that |x(τnℓ)| ≤ |Φ(τℓn, τℓn−1)w(τℓn−1)| ≤
eηTpεnℓ−1 ≤ eηTp(εnℓ−1 + gmax{|e(τnℓ+j−1)| : j ∈ [ℓ]}). If nℓ ∈ R, we

can follow the same steps as in Part 1 and conclude that the state x(τℓn)

satisfies equation (4.34), i.e., x(τℓn) = eAσ(τk)(τk+1−τk)(y(τℓn−1) − ŷ(τℓn−1) +

w(τℓn−1)). Next, we can follow the same steps that we used after equa-

tion (4.34) in part 1 to conclude that |x(τnℓ)| ≤ eηTp(εnℓ−1 + g|e(τℓn−1)|) ≤
eηTp(εnℓ−1 + gmax{|e(τnℓ+j−1)| : j ∈ [ℓ]}). Now, we need to find the value

of εℓn−1; we obtain that value by solving the recursion for εk+1 = eηTpεk +

eηTpgmax{|e(τℓn+j−1)|) : j ∈ [ℓ]} with εℓn = 0 for k = ℓn − 1 to obtain that

εℓn−1 = geηTp 1−eηTp(ℓ−1)

1−eηTpℓ
max{|e(τℓn+j−1)|) : j ∈ [ℓ]}. Finally, we arrive at

|x(τℓn)| ≤ eηTp
(
geηTp 1−eηTp(ℓ−1)

1−eηTpℓ
max{|e(τℓn+j−1)|) : j ∈ [ℓ]}+ g ×

× max{|e(τℓn+j−1)|) : j ∈ [ℓ]}
)
= geηTp 1−eηTpℓ

1−eηTpℓ
max{|e(τℓn+j−1)|) : j ∈ [ℓ]}.

This concludes the proof of Part 2.

Part 3: Analysis of the state’s inter-sample behavior, i.e., for t ∈
[τk, τk+1). In this part, let k ∈ Z≥0 be arbitrary. Our goal is to prove that,

for any t ∈ [τk, τk+1), we have that

|x(t)| ≤ C|x(τk)|+Dmax{|e(τℓn+j−1)|) : j ∈ [ℓ]}, (4.36)

where the constants are C := max{eηTp +
∥Bij

∥∥Fij
(t−τk)∥∞
η

: j ∈ [m]} and

D := max{g ∥Bij
∥∥Fij

(t−τk)∥∞
η

: j ∈ [m]}. First, we use the variation of con-

stants formula to get that |x(t)| =
∣∣∣Φ(t, τk)x(τk) + ∫ t

τk
Φ(t, τ)Bσ(τ)u(τ)dτ

∣∣∣ ≤
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eη(t−τk)|x(τk)| + ∥Bσ(τk)∥∥Fσ(τk)(τ − τk)∥∞
∫ t

τk
eη(t−τ)dτ |ŷ(τk)|, where the in-

equality follows from the triangle inequality and the facts that ∥Φ(t, τk)∥ ≤
eη(t−τk) and that

|Bσ(τ)u(τ)| ≤max{0, |Bσ(τk)Fσ(τk)(t− τk)ŷ(τk)|}

≤∥Bσ(τk)∥∥Fσ(τk)(τ − τk)∥∞|ŷ(τk)|.

Thus, by upper-bounding the integral by 1
η
, we get that |x(t)| ≤ eη(t−τk)|x(τk)|+

∥Bσ(τk)∥∥Fσ(τk)(τ−τk)∥∞
η

|ŷ(τk)|. Finally, we can write

|ŷ(τk)| = |Pkx̂(τk)|

≤ d|x̂(τk)|

≤ g
(
|x̂(τk)− x(τk)|+ |x(τk)|

)
≤ gmax{|e(τℓn+j−1)|) : j ∈ [ℓ]}+ g|x(τk)|.

By using the fact that eη(t−τk) ≤ eηTp for any t ∈ [τk, τk+1) and rearranging

the terms, we arrive at inequality (4.36). This concludes this part.

Part 4: Bounds on the norm of the state for time t ≥ t0. In this final

part, our goal is to prove that the inequality

|x(t)| ≤ M |x0|χ{s∈R≥0:τℓ−s>0}(t) + P∥e|[ℓ(n−2),ℓn]∥∞, (4.37)

where n̄ := ⌈ t−τ0
ℓTp

⌉, M := C, and P :=
(
CℓE + D

(
Cℓ−1
C−1

))
, holds for all

t ≥ t0. Before we do that, for each k ∈ [ℓ], we define yk := sup{|x(t)| : t ∈
[τℓ(n−1)+k−1, τℓ(n−1)+k)}. Further, we define y0 := |x(τℓ(n−1))|.
We start by analyzing what happens on the interval [τℓ(n−1), τℓn) for an ar-

bitrary n ∈ Z≥1. Let a = C and b = D∥e|[ℓ(n−1),ℓn]∥∞. Note that, by

taking the supremum over t ∈ [τℓ(n−1)+k−1, τℓ(n−1)+k) on both sides of in-

equality (4.36) we get that yk = sup{|x(t)| : t ∈ [τℓ(n−1)+k−1, τℓ(n−1)+k)} ≤
C|x(τℓ(n−1)+k−1)| +D∥e[ℓ(n−1),ℓn]∥∞ ≤ Cyk−1 +D∥e|[ℓ(n−1),ℓn]∥∞ = ayk−1 + b

where the first inequality comes from inequality (4.36) and the second in-

equality follows from the fact that34

yk−1 = sup{|x(t)| : t ∈ [τℓ(n−1)+k−2, τℓ(n−1)+k−1)}
34Note that |x(τℓ(n−1)+k−1)| ≤ sup{|x(t)| : t ∈ [τℓ(n−1)+k−2, τℓ(n−1)+k−1)} since x(·) is

a continuous function on the closed interval [τℓ(n−1)+k−2, τℓ(n−1)+k−1].
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if k ≥ 2 and yk−1 = |x(τℓ(n−1))| if k = 1. Now, we can apply Lemma

4.4.3 and arrive at yk ≤ aky0 + b
(

ak−1
a1−1

)
. Further, since a ≥ 1, we get

that yk ≤ aℓy0 + b
(

aℓ−1
a−1

)
for any k ∈ [ℓ]. Hence, for any t ∈ [τℓ(n−1), τℓn),

we get |x(t)| ≤ max{sup{|x(t)| : t ∈ [τℓ(n−1)+k−1, τℓ(n−1)+k)} : k ∈ [ℓ]} ≤
Cℓ|x(τℓ(n−1))| + D∥e|[ℓ(n−1),ℓn]∥∞

(
Cℓ−1
C−1

)
. Now, we break our analysis into

two cases. First, let n ≥ 2. In this case, we can use inequality (4.35) to get

that |x(τℓ(n−1))| ≤ E∥e|[ℓ(n−2),ℓ(n−1)]∥∞. Thus, by the inequality above, we

get that

|x(t)| ≤ CℓE∥e[ℓ(n−2),ℓ(n−1)]∥∞ +D∥e|[ℓ(n−1),ℓn]∥∞
(Cℓ − 1

C − 1

)
≤
(
CℓE +D

(Cℓ − 1

C − 1

))
∥e|[ℓ(n−2),ℓn]∥∞,

where we have used the fact that max{∥e|[ℓ(n−1),ℓn]∥∞, ∥e|[ℓ(n−2),ℓ(n−1)]∥∞} ≤
∥e|[ℓ(n−2),ℓn]∥∞, for any t ∈ [τℓ(n−1), τℓn). Second, when n = 1, we get that

|x(t)| ≤Cℓ|x(τ0)|+D∥e|[ℓ(n−1),ℓn]∥∞
(Cℓ − 1

C − 1

)
≤Cℓ|x(τ0)|+

(
CℓE +D

(Cℓ − 1

C − 1

))
∥e|[ℓ(n−2),ℓn]∥∞.

for any t ∈ [τ0, τℓ). Note that we can write n ∈ Z≥0 implicitly as ⌈ t−τ0
ℓTp

⌉ since
t ∈ [τℓ(n−1), τℓn). Finally, combining the previous inequalities, we conclude

the proof of the proposition.

4.4.4 Data-Rate Analysis

In this subsection, we finally prove Theorem 4.3.7. Also, we note that in the

following proof, we indirectly prove that Algorithm 4.4.1 works with a finite

data-rate. Further, we discuss the relationship of the following proof with

some results from the topological entropy literature in Appendix A.15.

Proof of Theorem 4.3.7. Before we continue, let J := max{Ji : i ∈ [m]} and

R0 := max{|x| : x ∈ K}. Also, for this proof, we make the two following

definitions: Let i ∈ [m] be a mode, then we define the perceived asymptotic
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active rate as

ρpi := lim sup
n→∞

1

n

n∑
j∈R

χ{i}(σ(τj)).

Further, for simplicity, we define ω := ℓ−min{#{ℓn, . . . , ℓ(n+ 1)− 1} ∩R :

n ∈ Z≥0}.
Pick ϵ := 2ϵ̄e−2αTp

P
in Algorithm 4.4.1 and pick M̄ := MeαℓTp , where M ∈ R>0

is the same as in Theorem 4.4.4. Further, definitions (4.24) and (4.27) give us

that |e(τn)| ≤ e−α(τn−τ0) for all n ∈ Z≥0. Consequently, for any t ∈ [τ0,∞),

we have that ∥e|[ℓ(n̄−2),ℓn̄]∥∞ ≤ ϵ
2
e
−αmax{⌈ t−τ0

ℓTp
⌉−2,0}ℓTp ≤ ϵ

2
e−αmax{t−τ0−2ℓTp,0},

where n̄ = ⌈ t−τ0
ℓTp

⌉. Choosing n ∈ Z≥0 and combining these previous results

with the bound (4.31), we get that

|x(t)| ≤ M |x0|χ{s∈R≥0:τℓ−s>0}(t) + P∥e|[ℓ(n−2),ℓn]∥∞

≤ M |x0|χ{s∈R≥0:τℓ−s>0}(t) +
ϵP

2
e−αmax{t−τ0−2ℓTp,0}

= M̄e−αℓTp |x0|χ{s∈R≥0:τℓ−s>0}(t) + ϵ̄e−αmax{t−τ0,2ℓTp}

≤ M̄e−αℓTp |x0|χ{s∈R≥0:τℓ−s>0}(t) + ϵ̄e−α(t−τ0)

≤ (M̄ |x0|+ ϵ̄)e−α(t−t0)

for all t ∈ [τ0, τn). Here, we used the fact that τ0 = t0 on the last inequality.

The third inequality follows from max{t − τ0 − 2ℓTp, 0} ≥ t − τ0 for all

t ≥ τ0. The final inequality follows from the facts that e−αℓTp ≤ e−α(t−τ0)

for t ∈ [τ0, τℓ) and that 0 = M̄ |x0|χ{s∈R≥0:τℓ−s>0}(t) < M̄ |x0|e−α(t−t0) for all

t ≥ τℓ.

Thus, we just proved that for any given α ∈ R≥0, M̄ ∈ R>0, ϵ̄ ∈ R>0, and

any compact set with nonempty interior K ⊂ Rdx , the set of control laws

generated by Algorithm 4.4.1 forms a stabilizing control set35 U (ϵ̄, M̄ ,K, α)

for system (4.1). From our discussion, we know that the cardinality of the

set UT (ϵ̄, M̄ ,K, α) is upper-bounded by
∏⌈T−t0

Tp
⌉

j=0 #Cj. Now, our goal is to

provide upper bounds for #Cn for each n ∈ Z≥0.

For n = 0, we have that #C0 ≤ ⌈dR0

ϵ
⌉. For n ∈ Z≥1, we divide the analysis

into two cases. The first case happens when n ∈ R and n ̸= 0. In this case,

κn
i −κn

i ≤ e(α+µ(Ai))Tp max{Γn
i : i ∈ [dx]}. Since, Γn

i is constant in i ∈ [dx], we

get that #Cn
i ≤ ⌈e(α+µ(Ai))Tp⌉. Thus, we conclude that #Cn ≤ ⌈e(α+µ(Ai))Tp⌉d.

35Compare with definition (4.2.2).
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The second case happens when n ̸∈ R. In that case, we have that

κn
i − κn

i ≤ 2(Jin|x̂(τn−1)|+ eηTp max{Γn−1
i : i ∈ [dx]}). (4.38)

Using the triangle inequality, we get that |x̂(τn−1)| ≤ |x(τn−1)| + |x̂(τn−1) −
x(τn−1)| ≤ M̄R0χ{s∈R≥0:τℓ−s>0}(t)+

ϵP
2
e−αmax{t−τ0,2ℓTp}+max{Γn−1

i : i ∈ [dx]},
where the second inequality comes from (4.31) and the fact that |x0| ≤ R0.

Now, we can substitute that on (4.38) to get that

κn
i − κn

i ≤ 2(Jin(M̄R0χ{s∈R≥0:τℓ−s>0}(t) +
ϵP

2
e−αmax{t−τ0−2ℓTp,0}+

max{Γn−1
i : i ∈ [dx]}) + eηTp max{Γn−1

i : i ∈ [dx]}). (4.39)

Dividing both sides by Γn
i = e−αTpΓn−1

i = ϵ
d
e−αnTp and recalling that Γn−1

i is

constant for i ∈ [dx], we get that

κn
i − κn

i

Γn
i

≤ 2(Jin(
dM̄R0e

αnTpχ{s∈R≥0:τℓ−s>0}(t)

ϵ
+

+
dP

2
e−αmax{−nTp+(t−τ0)−2ℓTp,−nTp} + eαTp) + e(a+α)Tp). (4.40)

Note that eαnTpχ{s∈R≥0:τℓ−s>0}(t) ≤ eαℓTp and that −max{−nTp + (t− τ0)−
2ℓTp,−nTp} = min{⌈ t−τ0

Tp
⌉Tp − (t− τ0)+ 2ℓTp, ⌈ t−τ0

Tp
⌉Tp}. Using the fact that

⌈ t−τ0
Tp

⌉Tp− (t− τ0) ≤ Tp, we get that −max{−nTp+(t− τ0)+2ℓTp,−nTp} ≤
min{(2ℓ+ 1)Tp, nTp} ≤ (2ℓ+ 1)Tp for all n ∈ Z≥0. Therefore,

κn
i − κn

i

Γn
i

≤ 2(Jin(
dM̄R0e

αℓTpχ{s∈R≥0:τℓ−s>0}(t)

ϵ
+

+
dP

2
eα(2ℓ+1)Tp + eαTp) + e(η+α)Tp). (4.41)

Hence, using the fact that J = max{Ji : i ∈ [m]} and recalling that, by Equa-

tion (4.20), we have that #Cn =
(∏d

i=1#Cn
i

)
=
(∏d

i=1⌈
κn
i −κn

i

Γn
i

⌉
)
. Therefore,

we conclude that #Cn ≤ ⌈2JdM̄R0e
αℓTp

ϵ
+ Jdeα(2ℓ+1)Tp + 2JeαTp + 2e(α+η)Tp⌉d,

for n < ℓ and n ̸∈ R, and that #Cn ≤ ⌈Jdeα(2ℓ+1)Tp + 2JeαTp + 2e(α+η)Tp⌉d,
for n ≥ ℓ and n ̸∈ R. For n ∈ Z≥1, let q(n) := ⌊n/ℓ⌋ be the integer part

of the division of n by ℓ and let r(n) := n − q(n)ℓ be the remainder of that

same division. Further, given a sequence (cn)n∈Z≥0
, for a ∈ Z≥0 and b ∈ Z≥0
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with a > b we define
∑b

j=a cj = 0. Additionally, define36 k := ⌈ T
Tp
⌉. Now, we

can write that

b(U (ϵ̄, M̄ ,K, α))

≤ lim sup
T→∞

1

T

⌈ T
Tp

⌉∑
j=0

log
(
#Cj

)
≤ lim sup

k→∞

1

kTp

k∑
j=0

log
(
#Cj

)
= lim sup

k→∞

1

kTp

( ℓ−1∑
j=0

log
(
#Cj

)
+

ℓq(k)∑
j=ℓ

log
(
#Cj

)
+

ℓq(k)+r(k)∑
j=ℓq(k)+1

log
(
#Cj

))

≤ lim sup
n→∞

1

kTp

( ℓ−1∑
j=0

log
(
#Cj

)
+ ω(q(k)− 1)×

× (d log
(
⌈Jdeα(2ℓ+1)Tp + 2JeαTp + 2e(α+η)Tp⌉

)
) +

ℓq(k)∑
j=ℓ
j∈R

log
(
#Cj

)
+

+

ℓq(k)+r(k)∑
j=ℓq(k)+1

log
(
#Cj

))
, (4.42)

where the first inequality follows from our coder-decoder/controller pair de-

scription37 and the second inequality follows from the fact that ⌈ T
Tp
⌉ = k

and that kTp ≤ T . The third inequality follows from the fact that there

are at most ω(q(k) − 1) values of j ̸∈ R on the interval {ℓ, . . . , ℓq(k)} by

Assumption 4.3.1. Next, note that the first and last terms on right-hand side

of (4.42) are bounded since those sums are finite. Therefore, considering the

division by 1
kTp

, their limit superior equals zero. The ratio ω(q(k)−1)
kTp

has a

limit superior that equals ω
ℓTp

since k = q(k)ℓ+ r(k) with 0 ≤ r(k) < ℓ. Also,

notice that log(#Cj) ≤
∑

i∈[m] χ{i}(σ(j))d log
(
⌈e(µ(Ai)+α)Tp⌉

)
for any j ∈ R

since σ(j) ∈ [m] for each j ∈ Z≥0 and because of the upper bound we derived

36k depends on T , but we drop that dependency to simplify the notation.
37See Equations (4.26) and (4.30) in our Algorithm 4.4.1 description.
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for #C when n ∈ R. Further, note that (4.4.4) can be written as

ρpi = lim sup
n→∞

1

n

( ℓ−1∑
j∈R

χ{i}(σ(j)) +

ℓq(n)∑
j=ℓ
j∈R

χ{i}(σ(j))+

ℓq(n)+r(n)∑
j=ℓq(n)+1

j∈R

χ{i}(σ(j))
)
= lim sup

n→∞

1

n

ℓq(n)∑
j=ℓ
j∈R

χ{i}(σ(j)),

which implies that

lim sup
k→∞

1

kTp

ℓq(k)∑
j=ℓ
j∈R

log
(
#Cj

)

≤ lim sup
k→∞

1

kTp

ℓq(k)∑
j=ℓ
j∈R

∑
i∈[m]

χ{i}(σ(j))d log
(
⌈e(µ(Ai)+α)Tp⌉

)

≤ 1

Tp

∑
i∈[m]

(
lim sup
k→∞

1

k

ℓq(k)∑
j=ℓ
j∈R

χ{i}(σ(j))
)
d log

(
⌈e(µ(Ai)+α)Tp⌉

)
=

1

Tp

∑
i∈[m]

ρpi d log
(
⌈e(µ(Ai)+α)Tp⌉

)
. (4.43)

Hence, we can write

b(U (ϵ̄, M̄ ,K, α))

≤ ω

ℓ

d log
(
⌈Jdeα(2ℓ+1)Tp + 2JeαTp + 2e(α+a)Tp⌉

)
Tp

+

+
1

Tp

m∑
i=1

ρpi d log
(
⌈e(µ(Ai)+α)Tp⌉

)
.
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Finally, note that Equation (4.5) gives us that

b(M̄, α) = lim
ϵ̄→0

inf{b(R(ϵ̄, M̄ ,K, α))}

≤ lim
ϵ̄→0

b(U (ϵ̄, M̄ ,K, α))

≤ ω

ℓ

d log
(
⌈Jdeα(2ℓ+1)Tp + 2JeαTp + 2e(α+a)Tp⌉

)
Tp

+

+
1

Tp

m∑
i=1

ρpi d log
(
⌈e(µ(Ai)+α)Tp⌉

)
.

Note that the right-hand side of the previous inequality is an upper bound

for Algorithm 4.4.1 data-rate

brx(ϵ, α) = lim sup
n→∞

1

nTp

n∑
i=1

log(#Cn),

concluding the proof.

4.5 Conclusion

We discussed in this chapter why we need a new controllability notion for

systems that operate with a finite data-rate. Then, we presented a necessary

condition and a sufficient condition for switched linear systems to be con-

trollable with a finite data-rate. Next, we used the switched linear system’s

structure to get simpler sufficient conditions. The first condition stated in

Lemma 4.3.3, uses the controllable subspaces of the modes and a mild as-

sumption on the switching signal to establish controllability with a finite

data-rate. The second one, stated in Proposition 4.3.5, required us to acti-

vate some controllable mode frequently enough. In particular, when all the

modes are controllable, this latter condition boils down to a simple inequal-

ity for the sampling frequency that guarantees that a system that satisfies

an ADT condition is controllable with a finite data-rate. After that, we

studied a sufficient condition for controllability with a finite data-rate when

packet losses might be present. We proved this condition by introducing an

algorithm, which gives us a controller design technique.
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CHAPTER 5

FUTURE RESEARCH DIRECTIONS

In the future, our goal will be to extend the present results to the nonlinear

case. More specifically, we want to extend the notion of controllability with

a finite data-rate to systems of the form

ẋ(t) = f(x(t), u(t)). (5.1)

At the moment, it seems intuitive that such a generalization is possible when

we consider controllability around a nominal trajectory. More formally, let

ν : R≥0 → Rm be the nominal control with the nominal initial condition

γ0 ∈ Rd and let the corresponding solution γ : R≥0 → Rd of (5.1) be the

nominal trajectory, i.e., γ(·) is the unique solution of (5.1) when the control

is equal to ν(·) and initial condition γ(0) = γ0. In practice, we only know

that γ0 ∈ K ⊂ Rd, where K is a compact set. It is reasonable to assume

that we know an estimate γ̄0 ∈ K for γ0 so that the error |γ0 − γ̄0| is small

in some sense. If system (5.1) is contractive, i.e., its nearby trajectories get

closer to each other exponentially fast, our control strategy should work.

However, if the nominal system ẏ(t) = f̄(y(t)) := f(y(t), ν(t)) has positive

topological entropy, we should expect that the true trajectory will diverge

from the nominal one. Intuitively, our system needs feedback, and how much

data we need to transmit from the system to the controller is related to the

topological entropy. To address this issue, we should make small corrections

to the nominal control ν(·) as we receive more information from our system’s

output. We can do that by applying a small additive perturbation, i.e.,

u(t) = ν(t) + ω(t) for some function ω(·). Denoting the solution of (5.1)

with initial condition γ̄0 ∈ K and control u(·) by γ̄(·), we define the error

as e(t) := γ(t) − γ̄(t). Using the Taylor expansion, we conclude that ė(t) =

ẋ(t) − ˙̄x(t) = fx(γ(t), ν(t))e(t) + fu(γ(t), ν(t))ω(t) + r(t, e(t), ω(t)), where

r(t, e(t), ω(t)) is the Taylor expansion’s remainder, and the functions fx(·, ·)
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and fu(·, ·) denote the Jacobians of f(·, ·) with respect to the first and second

variable, respectively. If we ignore the higher-order terms, we get that

ė(t) = fx(γ(t), ν(t))e(t) + fu(γ(t), ν(t))ω(t),

which is an LTV system. Thus, we can apply the theory of Chapter 3 and the

data-rate for controlling the original system will be related to the data-rate

to control the linearized one. Nonetheless, a careful analysis is needed here

to deal with the higher-order terms since their contribution can be relevant.

Therefore, we will focus on this problem as an interesting future research

direction.
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APPENDIX A

A.1 Proof of equivalence between the two definitions of

complete controllability

Proof. The definition of complete controllability in [56] can be understood as

follows: For every1 t ∈ R≥t0 , there exists t̄ ≥ t, such that W (t̄, t) is positive

definite. First, we prove that this definition implies the complete controlla-

bility definition given in Definition 4.3.1. We prove this fact by induction.

For our base step, pick s0 = t0. By the defintion of complete controllability

from [56], we know that there exists s1 > s0 such that W (s1, s0) is posi-

tive definite, which implies that it is invertible. Now we consider the step

n ∈ Z≥1. Note that there exists sn+1 > sn such that W (sn+1, sn) is positive

definite. Hence, we proved that there exists an increasing sequence (sn)n∈Z≥0

such that W (sn1 , sn) is invertible for each n ∈ Z≥0. Therefore, we proved the

first part of the claim.

Now, we assume Definition 4.3.1 and we show that this implies the definition

given in [56]. For any t ∈ R≥t0 , there exists n ∈ Z≥0 such that t ≤ sn.

Consider W (sn+1, t). Note that

W (sn+1, t) = W (sn+1, sn) + Φ(sn+1, sn)W (sn, t)Φ
′(sn+1, sn).

By hypothesis, we know that W (sn+1, sn) is positive definite2 and we know

that Φ(sn+1, sn)W (sn, t)Φ
′(sn+1, sn) is positive semi-definite. Therefore,

W (sn+1, t) is positive definite and we proved the claim.

1Here we are imposing that the initial time is t0 ∈ R, which was not required in [56].
2This is equivalent to invertibility of the Gramian.
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A.2 Proof of Lemma 3.3.2

Proof. Let (sn)n∈Z≥0
be such that W (sn+1, sn) is invertible for every n ∈ Z≥0

and that lim supn→∞
sn+1

sn
= R. Recursively define s̄0 := s0 and s̄n := min{s ∈

(sn)n∈Z≥0
: s ≥ s̄n−1 + 1} for every n ∈ Z≥1. First, notice that W (s̄n+1, s̄n)

is invertible for every n ∈ Z≥0 because there exists at least two distinct

elements from (sn)n∈Z≥0
in the interval [s̄n, s̄n+1]. Next, note that, for every

n ≥ 1, we have that s̄n ≥ 1 because s0 ≥ 0 and the fact that s̄n ≥ s̄1 ≥ 1.

Now, for every n ∈ Z≥0 we have that s̄n ∈ (sn)n∈Z≥0
. Thus, there exists

mn ∈ Z≥0 such that s̄n = smn . Write
smn+1

smn
. By the definition of s̄n+1, we

have that smn+1−1 < smn + 1. Hence,
smn+1−1

smn
< smn+1

smn
≤ 2, where the last

inequality comes from the fact that smn ≥ 1. With this, we conclude that

lim supn→∞
s̄n+1

s̄n
= lim supn→∞

smn+1

smn

smn+1−1

smn+1−1
≤

lim supn→∞ 2
smn+1

smn+1−1
= 2R. Further, note that s̄i+1−s̄i ≥ 1 for every i ∈ Z≥0.

Thus, s̄n − s̄0 =
∑n

i=0 s̄i+1 − s̄i ≥ n, where the first equality comes from

the equality for telescoping sums. Hence, s̄n+1−s̄0
s̄n

≥ n
s̄n
. Taking the limit

superior when n goes to infinity, we get that 2R ≥ lim supn→∞
s̄n+1−s̄0

s̄n
≥

lim supn→∞
n
s̄n
.

Therefore, we proved that given a sequence (sn)n∈Z≥0
we can build a subse-

quence (s̄n)n∈Z≥0
such that W (s̄n+1, s̄n) is invertible for every n ∈ Z≥0, that

lim supn→∞
s̄n+1

s̄n
< ∞, and that lim supn→∞

n
s̄n

< ∞.

A.3 Proof of Lemma 3.3.4

Proof. Note that, for every v ̸= 0 in Rd, we have that

v′Φ(sn+1, s)B(s)B′(s)Φ(sn+1, s)v = |v′Φ(sn+1, s)B(s)|2

≤ ∥Φ(sn+1, s)∥2∥B(s)∥2|v|2.

Also, because ∥Φ(sn+1, s)∥ ≤ eξ(sn+1−s) for every s ∈ [sn, sn+1) by Lemma

3.3.3, we get

Φ(sn+1, s)B(s)B′(s)Φ(sn+1, s) ≼ sup{∥B(t)∥2 : t ≥ t0}e2ξ(sn+1−s)Id.
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Now, integrating both sides from sn to sn+1, we conclude that

W (sn+1, sn) ≼ sup{∥B(t)∥2 : t ≥ t0}
e2ξ(sn+1−sn) − 1

2ξ
Id.

Finally, taking the norm and noticing that e−2ξsn < 1, we get

∥W (sn+1, sn)∥ ≤ sup{∥B(t)∥2 : t ≥ t0}
e2ξ(sn+1−sn) − 1

2ξ
.

and we conclude the proof.

A.4 Proof of Lemma 3.3.3

Proof. Recall that X(t) = Φ(t, t0) is the solution to the matrix differential

equation
dX(t)

dt
= A(t)X(t)

with X(t0) = Id and that X(·) is given by the Peano-Baker series3. More

explicitly, consider the recursively defined matrices Mk(t, t0) for t ≥ t0 and

all k ∈ Z≥0 by

M0(t, t0) := Id

and

Mk(t, t0) := Id +

∫ t

t0

A(τ)Mk−1(τ, t0)dτ

for k ∈ Z>0. Now, pick an arbitrary t1 > t0. It is a well-known fact that

Mk(·, t0) converges uniformly4 to X(·) = Φ(·, t0) on the interval [t0, t1].

3See, e.g. Chapter 4 of [54] or Chapter 3 of [42].
4See, e.g., Theorem 1 of Chapter 3 of [42].
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Our goal now is to prove that ∥Φ(t, t0)∥ ≤ eξ(t−t0) for all t ∈ [t1, t0]. We do

that by proving that ∥Mk(t, t0)∥ ≤
∑k

i=0 ξ
i (t−t0)i

i!
holds for every k ∈ Z≥0

using induction. The base case ∥M0(t, t0)∥ ≤ 1 is trivially true5. Now,

assume that ∥Mk−1(t, t0)∥ ≤
∑k−1

i=0 ξ
i (t−t0)i

i!
is true. Then,

∥Mk(t, t0)∥ ≤1 +

∫ t

t0

ξ∥Mk−1(τ, t0)dτ∥ ≤

1 +
k−1∑
i=0

ξi+1 (t− t0)
i+1

(i+ 1)!
=

k∑
j=0

ξj
(t− t0)

j

j!

where j = i+ 1 and the inequality holds for all t ∈ [t0, t1]. Thus,

∥Φ(t, t0)∥ = ∥ lim
N→∞

MN(t, t0)∥ = lim
N→∞

∥MN(t, t0)∥ ≤ eξ(t−t0).

for all t ∈ [t0, t1]. Since t1 > t0 was arbitrary, ∥Φ(t, t0)∥ ≤ eξ(t−t0) holds for

every t ≥ t0. Moreover, by definition of norm, we have that ∥Φ(t, t0)∥ ≥
|Φ(t, t0)v| for any v ∈ Rd with |v| = 1. Thus, we get |Φ(t, t0)v| ≤ eξ(t−t0) for

all t ≥ t0 and all |v| = 1, which proves the upper bound.

For the lower bound, let Z(t) = Φ′(t0, t). It is a well-known that6

dZ(t)

dt
= −A′(t)Z(t)

with Z(t0) = Id. Thus, we can apply an analogous reasoning to get that

∥Φ′(t0, t)∥ ≤ eξ(t−t0) since ξ = sup{∥ − A′(t)∥ : t ≥ t0} as well. Finally, pick

any v ∈ Rd with |v| = 1 and note that

1 = |v′v| = |v′Idv| = |v′Φ(t0, t)Φ(t, t0)v| ≤ |v′Φ(t0, t)||Φ(t, t0)v|.

Now, divide by7 |v′Φ(t0, t)| to get

|Φ(t, t0)v| ≥ |v′Φ(t0, t)|−1.

Next, note that

5We are using the convention that, for t = t0, (t− t0)
0 = limt→t0(t− t0)

0 = 1.
6See, e.g., Chapter 4 of [54].
7Φ(·, ·) is always invertible, so |v′Φ(t0, t)| cannot be zero.
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|Φ(t, t0)v| ≥ min{|Φ(t, t0)v| : |v| = 1} ≥ min{|v′Φ(t0, t)|−1 : |v| = 1}

=
(
max{|v′Φ(t0, t)| : |v| = 1}

)−1

= ∥Φ(t0, t)∥−1,

where the last equality follows from the definition of norm of a matrix. Fi-

nally, recall that ∥Φ′(t0, t)∥ = ∥Φ(t0, t)∥. So, we have, for any v ∈ Rd and

|v| = 1, that

|Φ(t, t0)v| ≥ ∥Φ(t0, t)∥−1 ≥ e−ξ(t−t0).

Therefore, we concluded the proof.

A.5 Proof of Proposition 4.2.2

To prove this proposition, we first need the following lemma.

Lemma A.5.1. Let t0 ∈ R≥0, let

F (t) =

∫ 1

0

(1− τ)fx(t, σ(t), v(t), τξ(t, t0, xk1) + (1− τ)ξ(t, t0, xk2))dτ,

where fx : [t0,∞)×[m]×Rdu×Rdx → Rdx×dx is continuous, σ : [t0,∞) → [m] is

a càdlàg function, u(xk1 , ·) : [t0,∞) → Rdu is an integrable locally essentially

bounded function that belongs to a control law U(K), which operates with

a finite data-rate. Also, let xk1 ∈ K, let xk2 ∈ K, and let ξ(t, t0, x) ∈ Rdx be

the same as in the statement of Proposition 4.2.2 for each x ∈ K and t ≥ t0.

Then, F (·) is a locally integrable function.

Proof of Lemma A.5.1. :
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Let D ⊂ R be a compact set and let d ∈ Z>0 be arbitrary. We en-

dow R with the usual Lebesgue σ-algebra L(R) and Rd with the product

σ-algebra L(Rd) := ⊗d
i=1R. Further, we endow any Lebesgue-measurable

subset S ⊂ Rd with the subset σ-algebra, i.e., the σ-algebra L(S,Rd) :=

{X ∩ S : X ∈ L(Rd)}. Furthermore, we treat any subset of Z≥0 as a subset

of R. Additionally, we denote by λR(·) the Lebesgue measure and by λRd(·)
the d-dimensional Lebesgue measure. We recall that that λRd(

∏d
i=1Xi) =∏d

i=1 λR(Xi) when Xi ∈ L(R) for each i ∈ [d]. Finally, we define the Lebesgue

measure λS(·) on a subset S ⊂ Rd as the restriction of the function λRd(·) to
the subspace σ-algebra L(S,Rd). We also note that we endow the Cartesian

product of two topological spaces with the product topology.

Let h1(·) := σ|D(·), h2(·) := u|D(xk1 , ·), and h3(t, τ) := τξ(t, t0, xk1) + (1 −
τ)ξ(t, t0, xk2) for (t, τ) ∈ D × [0, 1]. Note that h1(·) is bounded and mea-

surable8, h2(·) is essentially bounded and measurable, and h3(·, ·) is contin-
uous. The latter fact follows from the facts that ξ(·, t0, xk1) is an absolutely

continuous function (see, e.g., Section 1.5 from [60]) and usual properties

of sums and products of continuous functions. We claim that the function

G : D × [0, 1] → Rdx×dx defined as G(t, τ) := fx(t, h1(t), h2(t), h3(t, τ)) is

a measurable function. Indeed, if we define the function g : D × [0, 1] →
R≥0×[m]×Rdu×Rdx as g(t, τ) := (t, h1(t), h2(t), h3(t, τ)), Proposition 2.4 from

[59] tells us that g(·, ·) is measurable. Next, note that G(t, τ) = (fx ◦ g)(t, τ)
for each (t, τ) ∈ D × [0, 1]. Since g(·, ·) is measurable and fx(·, ·, ·, ·) is con-
tinuous, it follows that G(·, ·) is measurable (see, e.g., Section 2.1 from [59]).

8Every bounded càdlàg function is Lebesgue measurable since its discontinuity set is
countable. See, e.g., Chapter 3 from [72].
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We claim that G(·, ·) is essentially bounded. To see that, we make some def-

initions: let Bi := {hi(t) : (D \N)} for each i ∈ [2] and note that these sets

are compact. This latter claim follows from the fact that hi(·) is bounded

on D \ N and the fact that Bi is a closed of an Euclidean space for each

i ∈ [2]. Also, let B3 := {h3(t, τ) : (t, τ) ∈ D × [0, 1]}, which is also compact

because D × [0, 1] is compact and h3(·, ·) is continuous. Since fx(·, ·, ·, ·)
is continuous and D × B1 × B2 × B3 is compact (the finite product of

compact sets is compact, see, e.g., Theorem 26.7 from [73]), we get that

MG := sup{∥fx(t, p1, p2, p3)∥ : (t, p1, p2, p3) ∈ D×B1 ×B2 ×B3} < ∞. Now,

note that

sup{∥G(t, τ)∥ : (t, τ) ∈ (D \N)× [0, 1]}

= sup{∥fx(t, h1(t), h2(t), h3(t, τ))∥ : (t, τ) ∈ (D \N)× [0, 1]}

≤ sup{∥fx(t, p1, p2, p3)∥ : (t, p1, p2, p3) ∈ D ×B1 ×B2 ×B3}

= MG.

Thus, ∥G(·, ·)∥ < ∞ on (D \N)× [0, 1]. All that we need to do now is prove

that N × [0, 1] is a null set in D × [0, 1]. This follows from the fact that

λD×[0,1](N × [0, 1]) = λD(N)λ[0,1]([0, 1]) = 0 since λD(N) = 0, proving the

claim. We also note that, since G(·, ·) is measurable and essentially bounded,

it is integrable.

Finally, note that F (t) :=
∫ 1

0
(1 − τ)G(t, τ)dτ . Since G(·, ·) and 1 − τ are

integrable, we get that (1− τ)G(t, τ) is integrable. Then, the Fubini-Tonelli

Theorem (see, e.g., Theorem 2.37 from [59]) guarantees that F (·) is integrable
as well. Further, note that F (·) is bounded. Indeed, ∥F (t)∥ = ∥

∫ 1

0
(1 −

τ)G(t, τ)dτ∥ ≤
∫ 1

0
∥G(t, τ)∥dτ ≤ MG, proving the lemma.

This concludes the proof of Lemma A.5.1.

Now, we are ready to prove the Proposition. Since b(U (K)) = lim supt→∞
1

t−t0
log(#Ut(K)), we know that, for each ϵ ∈ R>0, there exists s1 = s1(ϵ) ∈

[t0,∞) such that

1

t− t0
log(Ut(K)) < ϵ+ b(U (K)) (A.1)

for all t ≥ s1.
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Since K ⊂ Rdx has nonempty interior, there exists some point x̄ ∈ K and

some δ = δ(x̄) ∈ R>0 such that the open ball B(x̄, δ) := {x ∈ Rd : |x| < δ}
is contained in K. Further, since K is closed, the closed ball B[x̄, δ] := {x ∈
Rd : |x| ≤ δ} is also contained in K.

Next, choose an arbitrary s ∈ R>0 so that s > s1 = s1(ϵ) and define

Ns := #Us(K). Also, choose Ns + 1 points S := {x1, . . . , xNs+1} ⊂ B[x̄, δ]

such that |xi − xj| ≥ δ
Ns+1

for each pair (i, j) ∈ [Ns + 1]2 with i ̸= j. Note

that we can always choose a set of Ns + 1 points with this property. One

example is the set S = {x ∈ Rdx : x = x̄ + δ
Ns+1

pe1 for p ∈ [Ns + 1]}, where
e1 = (1, 0, . . . , 0)′ ∈ Rdx . It is easy to verify that given x ∈ S and y ∈ S

distinct, we have |x− y| = δ
Ns+1

q ≥ δ
Ns+1

for some q ∈ [Ns]. Also, note that

any x ∈ S is such that |x̄− x| = δ
Ns+1

p ≤ δ, proving that S ⊂ B[x̄, δ]. Now,

by the pigeonhole principle, there are at least two indices k1 ∈ [Ns + 1] and

k2 ∈ [Ns + 1] of points in S such that u(xk1 , t) = u(xk2 , t) for all t ∈ [t0, s].

For simplicity, we define v(t) := u(xk1 , t) for each t ∈ [t0, s].

Now, for each fixed t ∈ [t0, s], we can apply the Taylor Theorem with re-

mainder in its integral form (see, e.g., Theorem 2.68 from [74]) to get

f(t, σ(t), v(t), ξ(t, t0, xk1)) =f(t, σ(t), v(t), ξ(t, t0, xk2)) + F (t)(ξ(t, t0, xk1)

− ξ(t, t0, xk2)) (A.2)

where F (t) =
∫ 1

0
(1− τ)fx(t, σ(t), v(t), τξ(t, t0, xk1) + (1− τ)ξ(t, t0, xk2))dτ is

the remainder. To continue the proof, let X (t) := ξ(t, t0, xk1) − ξ(t, t0, xk2)

for each t ∈ [t0, s]. Then, we can write

Ẋ (t) = ξ̇(t, t0, xk1)− ξ̇(t, t0, xk2)

= f(t, v(t), ξ(t, t0, xk1))− f(t, v(t), ξ(t, t0, xk2))

= F (t)X (t). (A.3)
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We can interpret equation (A.3) as a variational equation (see, e.g., [75] Sec-

tion 4.2.4) for nonlinear time-varying controlled switched systems. We notice

three things about equation (A.3). First, we prove in Lemma A.5.1 that F (·)
is locally integrable. Second, note that ∥F (·)∥ is bounded on [t0,∞). This

follows from

∥F (t)∥ ≤
∫ 1

0

(1− τ)dτ×

× ess sup{∥fx(p1, p2, p3, p4)∥ : p1 ∈ [t0,∞), p2 ∈ [m], p3 ∈ Ru, p4 ∈ Bx}

≤ a.

Third, the right-hand side of (A.3) is a linear time-varying system. Thus, we

know that this system has a unique Caratheodory solution (see, e.g., Section

1.5 from [60]). In fact, more is true: we can write X (t) = Φ(t, t0)X (t0) for

each t ∈ [t0, s], where Φ(t, t0) is the uniform limit over compact sets of the

Peano-Baker series (see, e.g., Theorem 1 from [76]).

Since F (·) is locally integrable and its norm is uniformly bounded by a ,

Lemma 3.3.3 tells us that |Φ(t, t0)X (t0)| ≥ e−a(t−t0)|X (t0)| for each t ∈
[t0,∞). Further, recall that, by our previous definitions of X (·) and the set

S, we have |X (t0)| = |xk1 − xk2| ≥ δ
Ns

≥ δ
2Ns

. By (A.1) and the fact that

s > s1, we know that 1
s−t0

log(Ns) < ϵ + b(U (K)), which implies that Ns <

e(s−t0)(b(U (K))+ϵ), which, by its turn, implies that 1
Ns

> e−(s−t0)(b(U (K))+ϵ).

Therefore,

|X (s)| = |Φ(s, t0)X (t0)| ≥
δ

2
e−a(s−t0)e−(s−t0)(b(U (K))+ϵ). (A.4)

Note that |ξ(s, t0, xk1) − ξ(s, t0, xk2)| ≤ 2max{|ξ(s, t0, xk1)|, |ξ(s, t0, xk2)|} ≤
2 sup{|ξ(s, t0, x)| : x ∈ K} = 2diam(s, t0, K), where the first inequality fol-

lows from the triangle inequality and the second follows from the fact that

xk1 ∈ K and xk2 ∈ K. Hence, combining inequality (A.4) and the above, we

get that

2diam(s, t0, K) ≥ δ

2
e−a(s−t0)e−(s−t0)(b(U (K))+ϵ). (A.5)

Finally, we write

1

s− t0
log(diam(s, t0, K)) ≥ 1

s− t0
log(δ/4)− a− b(U (K)) + ϵ, (A.6)
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for s > s1(ϵ) arbitrary. This implies that

lim inf
s→∞

1

s− t0
log(diam(s, t0, K)) ≥ −a− b(U (K)) + ϵ > −∞ (A.7)

proving the proposition.

To see why the switched linear case, i.e., f(t, σ(t), u(x0, t), x(t)) = Aσ(t)x(t)+

Bσ(t)u(x0, t), is a particular case, we have to show that the three bullets that

appear in the proposition statement hold. To prove that the first bullet holds,

note that the functions Aσ(·) and Bσ(·) are integrable since σ(·) is measurable

and there are only finitely many modes. Further, since Ru ⊂ Rdu is bounded,

we have that f(·, ·, ·, ·) satisfies conditions for existence and uniqueness for

Caratheodory solutions (see, e.g., Section 1.5 from [60]). All that is left for

us is to prove the third bullet. Since there are finitely many modes, we know

that the quantity fx(t, σ(t), u(x0, t), x(t)) = Aσ(t) remains bounded for all

times, proving that all assumptions hold for the switched linear case. This

concludes the proof of this proposition.

A.6 Proof of Theorem 3.3.6

We prove this theorem by contradiction. Assume that there exists s ≥ t0

such that for all t ≥ s we have that the Gramian of system (4.1) W (t, s) is

not invertible9, but system (4.1) can be stabilized with finite data-rate for

arbitrary α ∈ R≥0 and arbitrary ϵ ∈ R>0. Thus, there exists w(t) ∈ Rd for

every t ≥ t0 such that w(t) ∈ N (W (t, s)) for all t ≥ s and that |w(t)| = 1

for all t ≥ s.

First, note that w′(t)
∫ t

s
Φ(t, τ)Bσ(τ)(τ)u(τ)dτ = 0 for all

u(·) ∈ L∞
loc([t0,∞),Rm). To see that, recall that since w(t) ∈ N (W (t, s)) for

all t ≥ s, we have that w′(t)W (t, s)w(t) = 0. That implies that

w′(t)

∫ t

s

Φ(t, τ)Bσ(τ)(τ)B
′
σ(τ)(τ)Φ(t, τ)dτw(t)

=

∫ t

s

|w′(t)Φ(t, τ)Bσ(τ)(τ)|2dτ = 0.,

9By the remark following Definition 4.3.1, we know that this implies that system (4.1)
is not completely controllable.
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which implies that w′(t)Φ(t, τ)Bσ(τ)(τ) = 0 for almost all10 τ ∈ [s, t]. This

implies the claim

w′(t)

∫ t

s

Φ(t, τ)Bσ(τ)(τ)u(τ)dτ = 0.

Second, we pick11 α > a and pick some arbitrary ϵ ∈ R>0. Since the data

rate is finite, we know that there exists a stabilizing control set R(ϵ,M,K, α)

such that the cardinality of a set of restrictions of stabilizing controls Ns =

#Rs(ϵ,M,K, α) is finite. Thus, if we choose Ns+1 distinct initial conditions

x(t0) we have that at least two of them have the same associated control

restriction u|[t0,s](t) for all t ∈ [t0, s]. Now, let x̄ ∈ K be some interior point

to K. Pick an open ball B(x̄, r) that is contained in the interior of K. Thus,

for each i ∈ [d], we can pick Ns + 1 colinear points that lie on a line that

is parallel to ei. More precisely, define yj,i = x̄ + r
(

j−1
Ns+1

− 1
2

)
ei for every

j ∈ [Ns+1] and every i ∈ [d]. Note that all of such points belong to B(x̄, r).

Denote by uj,i(t) ∈ Rm the control function from the stabilizing control-set

corresponding to the initial condition yj,i at time t ≥ t0 for each i ∈ [d] and

j ∈ [Ns+1], and denote by xj,i(t) the corresponding state trajectory at time

t ≥ t0 for each i ∈ [d] and j ∈ [Ns + 1]. Then, we can use the variation of

constants formula to get

xj,i(t) = Φ(t, t0)yj,i +

∫ t

t0

Φ(t, τ)Bσ(τ)(τ)uj,i(τ)dτ

for all t ≥ t0. Now, by the pigeonhole principle, for each i ∈ [d], there

exists at least two distinct indices j∗i ∈ [Ns + 1] and k∗
i ∈ [Ns + 1] such

that the restriction of their corresponding controls (uj,i)[t0,s](t) is the same

for t ∈ [t0, s]. Let zi = yj∗i ,i−yk∗i ,i = ei
r(j∗i −k∗i )

Ns+1
for each i ∈ [d] and notice that

{z1, · · · , zd} form an orthogonal basis12 for Rd. Further note that |zi| ≥ r
Ns+1

since j∗i − k∗
i is a nonzero integer. Also, let ϕi(t) := xj∗i ,i

(t) − xk∗i ,i
(t) for

every i ∈ [d] and all t ≥ t0. Therefore, again by the variation of parameters

formula, we get that

ϕi(t) = Φ(t, t0)zi

10With respect to the Lebesgue measure on [s, t].
11Recall that a = sup{∥Ak∥ : k ∈ [m]}.
12We have that zi is parallel to ei for each i ∈ [d].
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for t ∈ [t0, s] and for i ∈ [d] and

ϕi(t) = Φ(t, t0)zi +

∫ t

t0

Φ(t, τ)Bσ(τ)(τ)(uj∗i ,i
(τ)− uk∗i ,i

(τ))dτ

for t ≥ s and for i ∈ [d]. Now, for each i ∈ [d] multiply ϕi(t) on the left by

w′(t) and note that

w′(t)ϕi(t) = w′(t)Φ(t, t0)zi

for all t ≥ t0 by the fact that w′(t)
∫ t

s
Φ(t, τ)Bσ(τ)(τ)u(τ)dτ = 0 for all t ≥ s

and all integrable u(·). Next, for every fixed time t ≥ t0, define coeffi-

cients ξi(t) ∈ R for all i ∈ [d] such that
∑d

i=1 |ξi(t)| = 1 and Φ(t, t0)z(t) ∈
span{w(t)}, where z(t) :=

∑d
i=1 ξi(t)zi. First, note that such coefficients

always exist since {z1, · · · , zd} forms a basis for Rd and Φ(t, t0) is invert-

ible for every t ≥ t0. Hence, we can define ξi(t) as c⟨Φ−1(t, t0)w(t), zi⟩/|zi|2

for13 c = 1

|
∑d

i ⟨Φ−1(t,t0)w(t),zi⟩/|zi|2|
. Further, note that |z(t)| =

∑d
i=1 |ξi(t)||zi| ≥

r
Ns+1

, where the equality follows from the fact that {z1, . . . , zd} is an orthog-

onal basis and the inequality follows since
∑d

i=1 |ξi(t)| = 1 and the fact that

|zi| ≥ r
Ns+1

for each i ∈ [d]. Let ϕ(t) :=
∑d

i=1 ξi(t)ϕi(t) for every t ≥ t0.

Thus, for every t ≥ t0 we have

w′(t)ϕ(t) = w′(t)Φ(t, t0)z(t)

for every t ≥ t0. Taking the norm on both sides and using the Cauchy-

Schwarz inequality, we see that

|w′(t)ϕ(t)| = |Φ(t, t0)z(t)|
13Note that

∑d
i=1 |ξi(t)| = |c||

∑d
i ⟨Φ−1(t, t0)w(t), zi⟩/|zi|2| = 1. Also, z(t) =

c
∑d

i=1⟨Φ−1(t, t0)w(t),
zi
|zi| ⟩

zi
|zi| = c

∑d
i=1⟨Φ−1(t, t0)w(t), ei⟩ei = cΦ−1(t, t0)w(t).
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because |w′(t)Φ(t, t0)z(t)| = |Φ(t, t0)z(t)| since Φ(t, t0)z(t) ∈ span{w(t)} and

|w(t)| = 1. Now, recall that, by definition of controllability with finite data-

rate, for every α ≥ 0 and every initial condition x(t0), we have that |x(t)| ≤(
M |x(t0)| + ϵ

)
e−α(t−t0) for some M ∈ R>0, some ϵ > 0, and all t ≥ t0. In

particular, this must hold for our choice of α > a and our arbitrary choice of

ϵ. This implies that

|ϕ(t)| = |
d∑

i=1

ξi(t)ϕi(t)| ≤
d∑

i=1

ξi(t)(|xj∗i ,i
(t)|+ |xk∗i ,i

(t)|)

≤ 2
(
MR0 + ϵ

)
e−α(t−t0)

where the first inequality comes from the triangle inequality. The second

inequality follows from the facts that
∑d

i=1 |ξi(t)| = 1, by construction, that

max{|xj∗i ,i
(t)|, |xk∗i ,i

(t)|} ≤
(
M |x(t0)| + ϵ

)
e−α(t−t0), by controllability with

finite data-rate, and that |x(t0)| ≤ R0. Now, by the Cauchy-Schwarz in-

equality, we have that |Φ(t, t0)z(t)| = |w′(t)ϕ(t)| ≤ |ϕ(t)| since |w(t)| = 1.

Hence, we arrive at

2
(
MR0 + ϵ

)
e−α(t−t0) ≥ |Φ(t, t0)z(t)|.

Finally, note that |Φ(t, t0)z(t)| ≥ r
Ns+1

e−a(t−t0). That implies that |Φ(t, t0) z(t)
|z(t)| |

≥ e−a(t−t0). Thus, |Φ(t, t0)z(t)| ≥ e−a(t−t0)|z(t)| ≥ r
Ns+1

e−a(t−t0), where the

last equality comes from the construction of z(t). Since this must hold for

each t ≥ t0 and we picked α > a, we arrived at a contradiction. Therefore,

system (4.1) must be completely controllable.
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A.7 Proof of Theorem 4.3.2

Proof. We prove that if system (4.1) is UCC, then it satisfies the assump-

tions from Theorem 3.3.5 from Chapter 3. The assumptions of that theorem

are: system (4.1) is persistently completely controllable and it satisfies the

exponential energy-growth condition14. First, we prove that UCC implies

persistent complete controllability. Since systems (4.1) is UCC, there exists

T ∈ R>0 and w ∈ R>0 such that W (t + T, t) ≥ wIdx for all t ∈ [t0,∞).

Choose sn = t0 + Tn for each n ∈ Z≥0. Note that W (sn+1, sn) is invertible

since sn+1 − sn = T for each n ∈ Z≥0. Further, lim supn→∞
sn+1

sn
< ∞ since

limn→∞
t0+(n+1)Tp

t0+nTp
= 1. Thus, we proved the first claim. Next, note that

W (t + T, t) ≥ wIdx implies that ∥W−1(sn+1, sn)∥ = max{|W−1(sn+1, sn)v| :
|v| = 1} ≤ w−1 for each n ∈ Z≥0, proving the second claim. Thus, we proved

our theorem.

A.8 Proof of Lemma 4.3.3

Proof. We need the following classical identity for the controllability Gramian:

let t2 > t1 > t0 for t0 ∈ R≥0, then

W (t2, t0) = Φσ(t2, t1)W (t1, t0)Φ
′
σ(t2, t1) +W (t2, t1). (A.8)

Sufficiency : there exist T ∈ R>0 and w ∈ R>0 such that W (t + T, t) ≥ Idxw

for each t ∈ R≥0. Now, let ℓ = ⌈ T
Tp
⌉ and fix some arbitrary t ∈ R≥0. Note

that ℓTp ≥ T since ⌈ T
Tp
⌉ ≥ T

Tp
. Let t2 = ℓTp + t, t1 = t + T , and t0 = t in

equation (A.8) to get that W (t+ℓTp, t) = Φσ(t+ℓTp, t+T )W (t+T, t)Φ′
σ(t+

ℓTp, t + T ) +W (t + ℓTp, t + T ). Since the controllability Gramian is always

positive semi-definite, i.e., W (t+ ℓTp, t+ T ) ≥ 0, and W (t+ T, t) ≥ Idxw we

conclude that W (t+ ℓTp, t) ≥ Φσ(t+ ℓTp, t+ T )Φ′
σ(t+ ℓTp, t)w.

14See subsection 4.3.7 for the formal statement of these conditions.
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Now, recall that the Rayleigh-Ritz Theorem (see, e.g., Theorem 4.2.2 from

[77]) gives us that AA′ ≥ λ(AA′)Idx for an arbitrary matrix A ∈ Rdx×dx ,

where λ(AA′) ∈ R≥0 is the minimum eigenvalue of AA′. Further, remember

that λ(AA′) equals the square of the smallest singular value of A (see, e.g.

Theorem 2.6.3 from [77]), which we denote by ς(A). Thus, AA′ ≥ ς2(A)Idx .

Hence, we can write W (t+ℓTp, t) ≥ ς2(Φσ(t+ℓTp, t+T ))wIdx . Noticing that

Φσ(t+ ℓTp, t+T ) is always invertible, we conclude that W (t+ ℓTp, t) > 0 for

all t ∈ R≥0.

For each t ∈ R≥0 and each xt ∈ Rdx , the condition W (t + ℓTp, t) > 0 implies

that there exists a control u : [t, t+ℓTp] → Rdu such that ϕ(t+ℓTp, t, xt, u(·)) =
0 by Proposition 5.2 from [56]. Thus, Lemma 4.3.8 tells us that system (4.1)

is ℓ-uniformly completely controllable.

Necessity : there exists ℓ ∈ Z>0 such that
∑ℓ(n(k)+1)−1

j=ℓn(k) Vj = Rd holds for each

k ∈ Z≥0, where n(k) = ⌊k
ℓ
⌋. We note that ℓ-uniform complete controllability

with losses in Rc implies, by Lemma 4.3.8, that system (4.1) is controllable

in the usual sense on each interval [τℓn, τℓ(n+1)] for n ∈ Z≥0. Again by Propo-

sition 5.2 from [56], we know that W (τℓ(n+1), τℓn) > 0 for each n ∈ Z≥0. Now,

we prove that there exists w̃ ∈ R>0 such that

W (τℓ(n+1), τℓn) > w̃Idx (A.9)

for every n ∈ Z≥0.

First, recall that Φσ(τk+1, τk) = eAσ(τk)Tp . Also, define

Wp(0, Tp) :=

∫ Tp

0

eAp(Tp−τ)BpBpe
A′

p(Tp−τ)dτ

131



for each p ∈ [m]. Now, we can rewriteW (τℓ(n+1), τℓn) in the following manner:

W (τℓ(n+1), τℓn) =

∫ ℓ(n+1)

τℓn

Φσ(τℓ(n+1), τ)Bσ(τ)B
′
σ(τ)Φ

′
σ(τℓ(n+1), τ)dτ

=

ℓ(n+1)−1∑
k=ℓn

∫ k+1

τk

Φσ(τℓ(n+1), τ)Bσ(τ)B
′
σ(τ)Φ

′
σ(τℓ(n+1), τ)dτ

=

ℓ(n+1)−1∑
k=ℓn

Φσ(τℓ(n+1), τk+1)×

×
∫ k+1

τk

Φσ(τk+1, τ)Bσ(τ)B
′
σ(τ)Φ

′
σ(τk+1, τ)dτΦ

′
σ(τℓ(n+1), τk+1)

=

ℓ(n+1)−1∑
k=ℓn

Φσ(τℓ(n+1), τk+1)Wσ(k)(0, Tp)Φ
′
σ(τℓ(n+1), τk+1)

=

ℓ(n+1)−1∑
k=ℓn

eAσ(ℓ(n+1)−1)Tp · · · eAσ(k+1)TpWσ(k)(0, Tp)e
A′

σ(k+1)
Tp · · · eA

′
σ(ℓ(n+1)−1)

Tp .

(A.10)

Note that the last term in equation (A.10) can only attain at mostmℓ possible

values, each one corresponding to a tuple (σ(τℓ(n+1)−1), . . . , σ(τℓn)) ∈ [m]ℓ.

This motivates us to define the simpligying notation

W(p1,...,pℓ) :=
ℓ∑

k=1

eApℓ
Tp · · · eApk+1

TpWσ(k)(0, Tp)e
A′

pk+1
Tp · · · eA

′
pℓ
Tp

for each tuple (p1, . . . , pℓ) ∈ [m]ℓ. Thus, we can write W (τℓ(n+1)−1, τℓn) =

Wσ(τℓn),...,σ(τℓ(n+1)−1) for each n ∈ Z≥0. This latter equality implies that there

exist constants w(p1,...,pℓ)
∈ R>0 such that W(p1,...,pℓ) > w(p1,...,pℓ)

Idx for each

(p1, . . . , pℓ) ∈ [m]ℓ, since W (τℓ(n+1)−1, τℓn) > 0 for every n ∈ Z≥0. Hence, if

we choose w̃ := min{w(p1,...,pℓ)
: (p1, . . . , pℓ) ∈ [m]ℓ}, we prove our claim that

W (τℓ(n+1), τℓn) > w̃Idx for every n ∈ Z≥0.

Choose T = 2ℓTp and fix an arbitrary t ∈ [t0,∞). Next, define q := ⌈ t−τ0
Tpℓ

⌉.
We claim that t ≤ τℓq and τℓ(q+1) < T + t. The first claim follows from

τℓq = τ0 + qℓTp = τ0 + ⌈ t−τ0
Tpℓ

⌉ℓTp ≥ τ0 + ( t−τ0
Tpℓ

)ℓTp = t and the second claim

follows from τℓ(q+1) = τ0 + (q + 1)ℓTp = τ0 + ⌈ t−τ0
Tpℓ

⌉ℓTp + ℓTp < τ0 + ( t−τ0
Tpℓ

+

1)ℓTp + ℓTp = t+ 2ℓTp = t+ T .
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We use (A.8) with the choices t2 = t+ T , t1 = τℓ(q+1), t0 = t to get that

W (t+ T, t)

= Φσ(t+ T, τℓ(q+1))W (τℓ(q+1), t)Φ
′
σ(t+ T, τℓ(q+1)) +W (t+ T, τℓ(q+1))

≥ Φσ(t+ T, τℓ(q+1))W (τℓ(q+1), t)Φ
′
σ(t+ T, τℓ(q+1)), (A.11)

where the inequality comes from the fact that any Gramian matrix is always

positive semi-definite. Similarly, we use (A.8) with the choices t2 = τℓ(q+1),

t1 = τℓq, t0 = t to get that

W (τℓ(q+1), t) = Φσ(τℓ(q+1), τℓq)W (τℓq, t)Φ
′
σ(τℓ(q+1), t1) +W (τℓ(q+1), τℓq)

≥ W (τℓ(q+1), τℓq) (A.12)

where the inequality follows from the fact that any Gramian matrix is positive

semi-definite and by Sylvester law of Inertia (see, e.g., Theorem 4.5.8 from

[77]), which states that two congruent15 symmetric matrices have the same

number of positive, negative, and zero eigenvalues. Hence, combining both

inequalities (A.11) and (A.12), we get that

W (t+ T, t) ≥ Φσ(t+ T, τℓ(q+1))W (τℓ(q+1), τℓq)Φ
′
σ(t+ T, τℓ(q+1))

≥ Φσ(t+ T, τℓ(q+1))Φ
′
σ(t+ T, τℓ(q+1))w̃, (A.13)

where the last inequality follows from inequality (A.9).

Recall that a := sup{∥Aσ(t)∥ : t ∈ [t0,∞)} is finite. Thus, we can apply

Lemma 3.3.3 to get that |Φσ(t+T, τℓ(q+1))v| ≥ e−a(t+T−τℓ(q+1)) for each v ∈ Rdx

with |v| = 1. Now, we note that T + t− τℓ(q+1) ≤ ℓTp. This follows from the

fact that T+t−τℓ(q+1) ≤ 2ℓTp+τℓq−τℓ(q+1) = ℓTp. Thus, |Φσ(t+T, τℓ(q+1))v| ≥
e−aℓTp for each v ∈ Rdx with |v| = 1. Next, note that e−a2ℓTp ≤ |Φσ(t +

T, τℓ(q+1))v|2 = v′Φ′
σ(t+T, τℓ(q+1))Φσ(t+T, τℓ(q+1))v for each v ∈ Rdx with |v| =

1. This last remark implies that e−a2ℓTpIdx ≤ Φ′
σ(t+T, τℓ(q+1))Φσ(t+T, τℓ(q+1))

(see, e.g. Section 7.1 from [77]).

15The matrices A ∈ Rdx×dx and B ∈ Rdx×dx are congruent to each other if there exists
an invertible matrix P ∈ Rdx×dx such that A = PBP ′. See, e.g., Definition 4.5.4 from [77].
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Let A ∈ Rdx×dx . Once again Rayleigh-Ritz Theorem tells us that a number

r ∈ R satisfies AA′ ≥ rIdx if, and only if, r lower-bounds the minimum

eigenvalue of AA′. Consequently, the previous inequality is true if, and only

if, r lower-bound the square of the minimum singular value of A. Recalling

that the singular values of A and A′ are the same (see, e.g., Theorem 2.6.3

from [77]), we conclude that AA′ ≥ rIdx if, and only if A′A ≥ rIdx . Thus,

since e−a2ℓTpIdx ≤ Φ′
σ(t+T, τℓ(q+1))Φσ(t+T, τℓ(q+1)), we have that e

−a2ℓTpIdx ≤
Φσ(t+T, τℓ(q+1))Φ

′
σ(t+T, τℓ(q+1)). This latter inequality, together with (A.13),

lets us write

W (t+ T, t) ≥ w̃e−a2ℓTpIdx .

Defining w := w̃e−a2ℓTp , we get that W (t + T, t) ≥ wIdx . Since t ∈ [t0,∞) is

arbitrary, we conlcude the proof of the lemma.

A.9 Proof of Proposition 4.3.5

Proof. Once again, we need the following classical identity for the controlla-

bility Gramian: let t2 > t1 > t0 for t0 ∈ R≥0, then

W (t2, t0) = Φσ(t2, t1)W (t1, t0)Φ
′
σ(t2, t1) +W (t2, t1). (A.14)

First, fix an arbitrary n ∈ Z≥0. Let t2 = τℓ(n+1), t1 = τk(n), and t0 = τℓn.

Then, equation (A.14) gives us that

W (τℓ(n+1),τℓn)

= Φσ(τℓ(n+1), τk(n))W (τk(n), τℓn)Φ
′
σ(τℓ(n+1), τk(n)) +W (τℓ(n+1), τk(n))

≥ W (τℓ(n+1), τk(n)), (A.15)

where the last inequality follows from the fact that

Φσ(τℓ(n+1), τk(n))W (τk(n), τℓn)Φ
′
σ(τℓ(n+1), τk(n)) ≥ 0

(see proof of Lemma 4.3.3).
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Next, let t2 = τℓ(n+1), t1 = τk(n)+1, and t0 = τk(n). Then, equation (A.14)

gives us that

W (τℓ(n+1),τk(n)) = Φσ(τℓ(n+1), τk(n)+1)W (τk(n)+1, τk(n))Φ
′
σ(τℓ(n+1), τk(n)+1)+

+W (τℓ(n+1), τk(n)+1)

≥ Φσ(τℓ(n+1), τk(n)+1)W (τk(n)+1, τk(n))Φ
′
σ(τℓ(n+1), τk(n)+1). (A.16)

Let Wp(0, T ) :=
∫ Tp

0
eAp(Tp−τ ′)BpB

′
pe

A′
p(Tp−τ ′)dτ for each p ∈ [m]. Also, for

each p ∈ [m] choose wp ∈ R>0 so that Wp(0, T ) ≥ wpIdx . Define w̄ :=

min{wp : p ∈ [m]} and note that w̄ ∈ R>0. It is easy to see that

W (τk(n)+1, τk(n))

=

∫ τk(n)+1

τk(n)

e
Aσ(τk(n))

(τk(n)+1−τ)
Bσ(τk(n))B

′
σ(τk(n))

e
A′

σ(τk(n))
(τk(n)+1−τ)

dτ

=

∫ Tp

0

e
Aσ(τk(n))

(Tp−τ ′)
Bσ(τk(n))B

′
σ(τk(n))

e
A′

σ(τk(n))
(Tp−τ ′)

dτ

= Wσ(τk(n))(0, Tp) ≥ w̄Idx ,

where the second equality follows from the change of variables τ ′ = τ − τk(n)

and the inequality follows from the definition of w̄. Combining the previous

inequality with inequalities (A.15) and (A.16), we get that

W (τℓ(n+1), τℓn) ≥ Φσ(τℓ(n+1), τk(n)+1)Φ
′
σ(τℓ(n+1), τk(n)+1)w̄.

Let a := sup{∥Aσ(t)∥ : t ∈ [t0,∞)}. Then, following similar steps as in the

necessity part of the proof of Lemma 4.3.3, we get that e−2a(τℓ(n+1)−τk(n)+1) ≤
Φσ(τℓ(n+1), τk(n)+1)Φ

′
σ(τℓ(n+1), τk(n)+1). Since τℓ(n+1) − τk(n)+1 ≤ ℓTp, we con-

clude that e−2aℓTpIdx ≤ Φσ(τℓ(n+1), τk(n)+1)Φ
′
σ(τℓ(n+1), τk(n)+1). Therefore, we

know that

W (τℓ(n+1), τℓn) ≥ w̄e−2aℓTpIdx .

Since n ∈ Z≥0 is arbitrary, we proved that W (τℓ(n+1), τℓn) ≥ w̄e−2aℓTpIdx for

all n ∈ Z≥0.
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To finish this proof, we take T = 2ℓTp and let t ∈ [t0,∞) be arbitrary.

Further, define w̃ := w̄e−2aℓTp . Then, we follow the exact same steps as

in the proof of Lemma 4.3.3 from the paragraph that starts with “Chose

T = 2ℓTp”. We get that W (t + T, t) ≥ w̃e−2aℓTpIdx = w̄e−4aℓTpIdx . Choosing

w := w̃e−2aℓTp , we conclude that system (4.1) is UCC. This concludes the

proof of the Proposition.

A.10 Proof Corollary 4.3.6

Proof. Let τD
N0+2

≥ Tp. Take ℓ ∈ Z>0 to be ℓ := N0 + 2. Then, the ADT

condition tells us that the number of switchings on any interval of length ℓTp

is upper-bounded by the quantityN0+
ℓTp

τD
= N0+

(N0+2)Tp

τD
≤ N0+1, where the

last inequality follows from our initial assumption. Thus, for each n ∈ Z≥0,

the time interval [τℓn, τℓ(n+1)) has at most N0 + 1 switchings and contains

N0 + 2 sampling intervals. Therefore, by the pigeonhole principle, for each

n ∈ Z>0, we know that there exists some k(n) ∈ Z>0 such that k(n) ̸∈ S, i.e.,
there is no switching on the time interval [τk(n), τ(k(n)+1)). Consequently, since

all modes are controllable, we have that ⟨Aσ(k(n))|Bσ(k(n))⟩ = Rd. Hence, all

assumption from Proposition 4.3.5 hold, concluding the proof of the corollary.

A.11 Proof of Lemma 4.3.8

Proof. We prove the sufficiency and necessity parts separately. We take this

opportunity to make a few definitions and prove some auxiliary results. For

each k ∈ Z≥0, define the linear operator

Lk : L
∞
loc([τk, τk+1),R

du) → Rdx
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given by Lk(u(·)) :=
∫ τk+1

τk
Φσ(τk+1, τ)Bσ(τ)u(τ)dτ . Now, given two real vector

spaces V and W and a linear operator L : V → W , we define the range of

L to be the subspace R(L) := {w ∈ W : L(v) = w for some v ∈ V }. The

next result will be instrumental in what follows: the range of Lk(·) equals

Φσ(τk+1, τℓn)Vk, i.e.,

R(Lk(·)) = Φσ(τk+1, τℓn)Vk. (A.17)

Indeed, note that there are no switchings inside the interval [τk, τk+1), i.e.,

system (4.1) behaves as an LTI system on this interval. It is a well-known

fact that R(Lk(·)) = R(W (τk+1, τk)) (see16, e.g., Lemma 2.1 from [78]).

Furthermore, R(W (τk+1, τk)) = ⟨Aσ(τk)|Bσ(τk)⟩ (see, e.g., Lemma 2.10 from

[78]) since Aσ(t) and Bσ(t) are constant on the time interval [τk, τk+1). Thus,

R(Lk(·)) = ⟨Aσ(τk)|Bσ(τk)⟩ = Φσ(τk+1, τℓn)Vk and we conclude the proof of

our remark.

To aid the reader, we now prove some well-known facts about the range of

linear operators. Let V and W be real vector spaces, let L : V → W be

a linear operator, and let S ⊂ V be a subset. We define LS := {w ∈ W :

L(v) = w for some v ∈ S}. Let L1 : V → W and L2 : W → Z be linear

operators, where Z is a real vector space. Then, we see that

R(L2L2) = {z ∈ Z : L2L1(v) = z for some v ∈ V }

= {z ∈ Z : L2(y) = z for some y ∈ R(L1)} = L2R(L1). (A.18)

Finally, let L1 : V → W and L2 : V → W be linear operators. Then, we see

that

R(L1+L2) = {w ∈ W : L1(v) + L2(v) for some v ∈ V }

⊂ {w ∈ W : y1 + y2 = w for some y1 ∈ RL1 and some y2 ∈ RL2}

= RL1 + RL2 (A.19)

16Although it is not explicitly mentioned, the proof of Lemma 2.1 provided in [78] shows
that the control is integrable locally essentially bounded.
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Sufficiency : for each n ∈ Z≥0 and each x ∈ Rdx , there exist a control un(·) ∈
L∞
loc([τℓn, τℓ(n+1)),Rdu) with the following property: if x(τℓn) = x, then we

have x(τℓ(n+1)) = 0. We start this proof by noticing that the variation of

constants formula lets us write that

0 = x(τℓ(n+1)) = Φσ(τℓ(n+1), τℓn)x+

∫ τℓ(n+1)

τℓn

Φσ(τℓ(n+1), τ)Bσ(τ)un(τ)dτ.

We can rewrite the above integral as∫ τℓ(n+1)

τℓn

Φσ(τℓ(n+1), τ)Bσ(τ)un(τ)dτ

=

ℓ(n+1)−1∑
k=ℓn

∫ τk+1

τk

Φσ(τℓ(n+1), τ)Bσ(τ)un(τ)dτ

=

ℓ(n+1)−1∑
k=ℓn

Φσ(τℓ(n+1), τk+1)

∫ τk+1

τk

Φσ(τk+1, τ)Bσ(τ)un(τ)dτ

=

ℓ(n+1)−1∑
k=ℓn

Φσ(τℓ(n+1), τk+1)Lk(un|[τk,τk+1)(·)). (A.20)

Since x ∈ Rdx is arbitrary and Φσ(τℓ(n+1), τℓn) is invertible, our initial as-

sumption is equivalent to the fact that

Rdx = R

(∫ τℓ(n+1)

τℓn

Φσ(τℓ(n+1), τ)Bσ(τ)un(τ)dτ

)
,

which, by equation (A.20), is equivalent to the following condition

Rdx = R

ℓ(n+1)−1∑
k=ℓn

Φσ(τℓ(n+1), τk+1)Lk(un|[τk,τk+1)(·))

 . (A.21)

Using the set inclusion (A.19), we can write

R

ℓ(n+1)−1∑
k=ℓn

Φσ(τℓ(n+1), τk+1)Lk(un|[τk,τk+1)(·))


⊂

ℓ(n+1)−1∑
k=ℓn

R(Φσ(τℓ(n+1), τk+1)Lk(un|[τk,τk+1)(·))).
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Next, using (A.18), we conclude that

R

ℓ(n+1)−1∑
k=ℓn

Φσ(τℓ(n+1), τk+1)Lk(un|[τk,τk+1)(·))


⊂

ℓ(n+1)−1∑
k=ℓn

Φσ(τℓ(n+1), τk+1)R(Lk(un|[τk,τk+1)(·))).

Thus, the previous inclusion together with the equality (A.21), lets us write

that

Rdx ⊂
ℓ(n+1)−1∑

k=ℓn

Φσ(τℓn, τk+1)R(Lk(un|[τk,τk+1)(·))).

We multiply both terms in the previous relation by Φσ(τℓn, τℓ(n+1)) on the

left to get that

Rdx ⊂
ℓ(n+1)−1∑

k=ℓn

Φσ(τℓn, τℓ(n+1))Φσ(τℓ(n+1), τk+1)R(Lk(un|[τk,τk+1)(·)))

=

ℓ(n+1)−1∑
k=ℓn

Φσ(τℓn, τk+1)R(Lk(un|[τk,τk+1)(·)))

=

ℓ(n+1)−1∑
k=ℓn

Φσ(τℓn, τk+1)Φσ(τk+1, τℓn)Vk =

ℓ(n+1)−1∑
k=ℓn

Vk,

where the first equality follows from the semi-group property of the state-

transition matrix, and the second equality follows from equation (A.17). Fi-

nally, we note that the inclusion is actually an equality because the range of

the operator on the right is Rdx . Hence,

Rdx =

ℓ(n+1)−1∑
k=ℓn

Vk.

Since this holds for any n ∈ Z≥0, we conclude the proof of the sufficiency

part.

Necessity : there exists ℓ ∈ Z≥0 such that system (4.1) is ℓ-uniformly com-

pletely controllable. So, for each x ∈ Rdx and each n ∈ Z≥0, we can write

x =
∑ℓ(n+1)−1

k=ℓn xj, where xj ∈ Vj for each j ∈ {ℓn, . . . , ℓ(n + 1) − 1}. To

organize our ideas, we split the proof of necessity into four parts.

139



First, we have that Φσ(τk+1, τℓn)xk ∈ ⟨Aσ(τk)|Bσ(τk)⟩. Indeed, we know that

xk ∈ Φ−1
σ (τk, τℓn)⟨Aσ(τk)|Bσ(τk)⟩. Thus, Φσ(τk, τℓn)xk ∈ ⟨Aσ(τk)|Bσ(τk)⟩. Fur-

thermore, we also have that Φσ(τk+1, τk) = eAσ(τk)Tp , which implies that

Φσ(τk+1, τk)⟨Aσ(τk)|Bσ(τk)⟩ = ⟨Aσ(τk)|Bσ(τk)⟩ since ⟨Aσ(τk)|Bσ(τk)⟩ is Aσ(τk)-

invariant (see, e.g., Chapter 1 from [79]).

Second, equation (A.17) gives us that R(Lk(·)) = Φσ(τk+1, τℓn)Vk for each

k ∈ Z≥0. This implies that there exists a L∞
loc([τk, τk+1),Rdu) function uk :

[τk, τk+1) → Rdu such that −Φσ(τk+1, τℓn)xk = Lk(uk(·)).
Third, define the function u : [τℓn, τℓ(n+1)) → Rdu as u(t) = uk(t) for t ∈
[τk, τk+1) and each k ∈ {ℓn, . . . , ℓ(n+ 1)− 1}. We note that u(·) is
L∞
loc([τℓn, τℓ(n+1)),Rdu). This follows from the facts that each uk(·) is integrable

on its own domain and that the set where u(·) is not bounded is a null

Lebesgue set. This latter fact follows from the simple observation that {t ∈
[τℓn, τℓ(n+1)) : |u(t)| = ∞} = ∪ℓ(n+1)−1

k=ℓn {t ∈ [τk, τk+1) : |uk(t)| = ∞} and that

the finite union of null sets is a null set. Therefore, u(·) is locally essentially

bounded. Fourth, let x(τℓn) = x. Then, we can use the variation of constants

formula to get that

x(τℓ(n+1)) = Φσ(τℓ(n+1), τℓn)

ℓ(n+1)−1∑
k=ℓn

xk +

∫ τℓ(n+1)

τℓn

Φσ(τℓ(n+1), τ)Bσ(τ)u(τ)dτ

= Φσ(τℓ(n+1), τℓn)

ℓ(n+1)−1∑
k=ℓn

xk +

ℓ(n+1)−1∑
k=ℓn

∫ τk+1

τk

Φσ(τℓ(n+1), τ)Bσ(τ)uk(τ)dτ

= Φσ(τℓ(n+1), τℓn)

ℓ(n+1)−1∑
k=ℓn

xk +

ℓ(n+1)−1∑
k=ℓn

∫ τk+1

τk

Φσ(τk+1, τ)Bσ(τ)uk(τ)dτ


= Φσ(τℓ(n+1), τℓn)

ℓ(n+1)−1∑
k=ℓn

xk + Lk(uk(·))


= 0.

Since n ∈ Z≥0 is arbitrary, we conclude the proof.
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A.12 Proof of Lemma 4.3.9

We prove the more general fact that given subspaces V ⊂ Rd and W ⊂ Rd

such that V ⊕ W = Rd, then the Euclidean norm of the projection matrix

PV over V and parallel to W is given by ∥PV ∥ = 1
(1−cos2(V,W ))1/2

. If V = {0},
then PV = 0 and ∥PV ∥ = 0 ≤ 1. Thus, we can assume that V ̸= {0}. First,
given any vector x ∈ Rd \ {0}, we can write it uniquely as x = αv + βw,

where v ∈ V and w ∈ W since V ⊕W = Rd. Then, we see that PV x = αv

since PV is a projection along V . Assume that αv ̸= 0 and that βw ̸= 0, i.e.,

x ̸∈ V and x ̸∈ W . Now, we see that

|PV x|2 =
|αv|2

|αv + βw|2
=

|αv|2

|αv|2 + |βw|2 + 2αβ⟨v, w⟩

=
1

1 + | βw|αv| |2 + 2 α
|α|β⟨

v
|v| ,

w
|w|⟩

|w|
|αv|

=
1

1 + | βw|αv| |2 + 2⟨ v
|v| ,

w
|w|⟩

α
|α|

β|w|
|αv|

,

by simple algebraic steps. Define y := α
|α|

β|w|
|αv| ∈ R and note that y2 = | βw|αv| |

2.

Thus, we can write

|PV x|2 =
1

1 + 2y⟨ v
|v| ,

w
|w|⟩+ y2

.

Note that the right-hand side can be upper-bounded by 1
1−⟨ v

|v| ,
w
|w| ⟩2

since

the quadratic function at the denominator achieves its minimum for y∗ =

−⟨ v
|v| ,

w
|w|⟩. Thus, we get that

|PV x|2 ≤
1

1− ⟨ v
|v| ,

w
|w|⟩2

.

Further, the term 1−⟨ v
|v| ,

w
|w|⟩

2 that can be lower-bounded by 1−cos2(V,W ).

Therefore, we have that

|PV x| ≤
1

(1− cos2(V,W ))1/2
(A.22)
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for any x ∈ Rd \ {0} such that x ̸∈ V and x ̸∈ W . If x ∈ V , then |PV x| =
|x|
|x| = 1. If x ∈ W , then PV x = 0. Thus, for any x ∈ Rd \ {0}, we have that

|PV x| ≤ max{0, 1, 1
(1−cos2(V,W ))1/2

} = 1
(1−cos2(V,W ))1/2

, where the last equality

follows from the fact that cos(V,W ) ∈ [0, 1).

Next, note that there exist v∗ ∈ V and w∗ ∈ W such that |v∗| = |w∗| = 1

and that |⟨v∗, w∗⟩| = cos(V,W ). This follows from the fact that the function

f(v, w) := |⟨v, w⟩| is continuous and the set {(v, w) ∈ V ×W : |v| = |w| = 1}
is compact. Thus, the maximum is achieved by some pair (v∗, w∗) ∈ V ×W

with |v∗| = |w∗| = 1. Since cos(V,W ) = max{f(v, w) : (v, w) ∈ V ×
W and |v| = |w| = 1}, we conclude the proof of this claim. Now, choose x =

v∗ − cos(V,W )w∗. Therefore, α = 1, β = − cos(V,W ), and y = − cos(V,W ).

Therefore, we get that 1
1+2y⟨v∗,w∗⟩+y2

= 1
(1−cos2(V,W ))1/2

. Thus, the maximum

on the right-hand side of inequality (A.22) is achieved. Hence, we conclude

that ∥PV ∥ = 1
(1−cos2(V,W ))1/2

.

A.13 Proof of Lemma 4.4.2

First, the fact that the Riccati equation Ṗσ(τk)(t − τk) = −A′
σ(τk)

Pσ(τk)(t −
τk)−Pσ(τk)(t− τk)Aσ(τk) −Qσ(τk) +Pσ(τk)B

′
σ(τk)

R−1
σ(τk)

Bσ(τk)Pσ(τk)(t− τk) with

final condition Pσ(τk)(τk+1) = Id has a unique symmetric positive definite

solution for all t ∈ [τk, τk+1] is standard (see, e.g., Chapter 6 of [75]). Fur-

thermore, it is also standard that the system ẋ(t) = Aσ(τk)x(t) + Bσ(τk)u(t)

with initial condition x(τk) at initial time τk under the feedback control

u(t) = −R−1
σ(τk)

B′
σ(τk)

Pσ(τk)(t − τk)x(t) is such that x(τk+1) = 0. Note that

the feedback system, after making the substitution of u(t), becomes ẋ(t) =

(Aσ(τk) −R−1
σ(τk)

B′
σ(τk)

Pσ(τk)(t− τk))x(t) for t ∈ [τk, τk+1].

Second, note that ϕσ(τk)(t− τk) is the matrix transfer function for the LTV

system ẋ(t) = (Aσ(τk) − R−1
σ(τk)

B′
σ(τk)

Pσ(τk)(t − τk))x(t) on the time interval

[τk, τk+1]. Thus, note that ϕσ(τk)(t − τk)x(τk) = x(t) by this previous fact.

Hence, we can write the previous feedback law as u(t) = −R−1
σ(τk)

B′
σ(τk)

Pσ(τk)(t−
τk)ϕσ(τk)(t− τk)x(τk), which proves the lemma.
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A.14 Proof of Lemma 4.4.3

We first prove the following inequality by induction over k ∈ Z≥1:

yk ≤ aky0 + b
k−1∑
j=0

aj.

Let k = 1, then

y1 ≤ ay0 + b.

Now, consider k = n+ 1 for n ∈ Z≥1. Then,

yn+1 ≤ ayn + b ≤ a

(
any0 + b

n−1∑
j=0

aj

)
+ b

= an+1y0 + b
n∑

j=1

aj + b,

where the second inequality comes from our induction hypothesis, proving

the claim. Recalling that
∑n

j=0 a
j = an+1−1

a−1
, we conclude the proof of this

lemma.
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A.15 Relation of Theorem 4.3.7 and the literature on

entropy

Remark A.15.1 (Relationship with topological entropy). There exists a

connection between the previous upper bound for the data rate used by our

coder-decoder/controller and recent results on upper bound for the topolog-

ical entropy of linear switched systems. To see that, we make a few sim-

plifying assumptions. First, assume that ω = 0, i.e., the switching times

happen synchronously with the sampling times, then the perceived asymp-

totic active rate is given by ρpi = lim supt→∞
1
t

∫ t

t0
χ{i}(σ(τ))dτ . The right-

hand side of the latter equation is called asymptotic active rate of the i-th

mode in [26] and is denoted by ρ̂i. Further, we assume that the previous

limit superior is actually a limit17. Also, if we take the limit as Tp → ∞
in the last inequality for the data-rate given in the proof of Theorem 4.3.7,

we see that 1
Tp

log
(
⌈e(µ(Ai)+α)Tp⌉

)
→ max{0, µ(Ai) + α} since18 1

T
log
(
exT
)
≤

1
T
log
(
⌈exT ⌉

)
≤ max{0, x+ 1

T
}. Thus, inequality the inequality for the data-

rate given in Theorem 4.3.7 becomes b(M̄, α) ≤
∑

i∈[m] ρidmax{0, µ(Ai)+α}.
Taking α = 0, we can compare our result with the upper-bound for the topo-

logical entropy of linear switched systems presented in Theorem 1 from [26].

In that paper, the upper bound presented was

lim sup
t→∞

∑
i∈[m]

max{0, dµ(Ai)ρi(t)} =
∑
i∈[m]

max{0, dµ(Ai)ρ̂i},

where we have used the fact that the limit superior is a limit to get the

equality. Comparing, we see that the upper bound given in the proof of the

Theorem 4.3.7 becomes
∑

i∈[m] max{0, dµ(Ai)ρ̂i}, which is the same as the

upper-bound given in [26]. Informally, if the sampling period Tp is large,

system (4.1) satisfies Assumption 4.3.1 with ω/ℓ small, and we use α = 0,

then the data-rate used by our Algorithm 4.4.1 is close to the upper-bound

for the topological entropy provided in [26].

17In our current analysis, we can drop this assumption by slightly modifying the inequal-
ities (4.43) and we would obtain the same conclusion without this assumption. However,
this would make the proof longer and less clear.

18Note that log
(
⌈exT ⌉

)
= 0 if xT ≤ 0 and that log

(
⌈exT ⌉

)
≤ log

(
exT
)
+ 1 if x > 0.
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