NONLINEAR CONTROL with LIMITED INFORMATION

Daniel Liberzon

Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign

Plenary talk, 2nd Indian Control Conference, Hyderabad, Jan 5, 2015
INFORMATION FLOW in CONTROL SYSTEMS

Plant

Controller
INFORMATION FLOW in CONTROL SYSTEMS

- Coarse sensing
- Limited communication capacity
 - many control loops share network cable or wireless medium
 - microsystems with many sensors/actuators on one chip
- Need to minimize information transmission (security)
- Event-driven actuators
- Theoretical interest
BACKGROUND

Previous work:

[Brockett, Delchamps, Elia, Mitter, Nair, Savkin, Tatikonda, Wong,…]

• Deterministic & stochastic models
• Tools from information theory
• Mostly for linear plant dynamics

Our goals:

• Handle nonlinear dynamics
• Unified framework for
 • quantization
 • time delays
 • disturbances
OUR APPROACH

(Goal: treat nonlinear systems; handle quantization, delays, etc.)

• Model these effects via **deterministic** error signals, \(e \)
• Design a control law ignoring these errors, \(u = k(x) \)
• “Certainty equivalence”: apply control, \(u = k(x + e) \)
 combined with estimation to reduce \(e \) to zero

Caveat:
This doesn’t work in general, need robustness from controller

Technical tools:
• Input-to-state stability (ISS) • Small-gain theorems
• Lyapunov functions • Hybrid systems
$z \in \mathcal{R}^k \xrightarrow{\text{Encoder}} i \in \{1, \ldots, N\} \xrightarrow{\text{Decoder}} q(z) \in \mathcal{Q}$

\mathcal{R}^k is partitioned into quantization regions
QUANTIZATION and ISS

\[\dot{x} = f(x, u) \]
QUANTIZATION and ISS

\[\dot{x} = f(x, k(x)) \quad \text{– assume glob. asymp. stable (GAS)} \]
QUANTIZATION and ISS

\[\dot{x} = f(x, k(q(x))) \]

no longer GAS
\[\dot{x} = f(x, k(q(x))) \]
\[= f(x, k(x + e)) \]

quantization error

Assume \[\exists V : \]
\[|x| \geq \rho(|e|) \]

\[\downarrow \]
\[\frac{\partial V}{\partial x} f(x, k(x+e)) < 0 \]

class \(\mathcal{K}_\infty \)
\[\dot{x} = f(x, k(q(x))) = f(x, k(x + e)) \]

Quantization error

Assume \(\exists V : \)

\[|x| \geq \rho(|e|) \]

\[\frac{\partial V}{\partial x} f(x, k(x + e)) < 0 \]

Solutions that start in \(\mathcal{R}_1 \) enter \(\mathcal{R}_2 \) and remain there

This is input-to-state stability (ISS) w.r.t. measurement errors

In time domain: \(|x(t)| \leq \beta(|x_0|, t) + \gamma(\|e\|_{[0,t]}) \)
LINEAR SYSTEMS

\[\dot{x} = Ax + Bu \]

\[\exists \text{ feedback gain } K \text{ & Lyapunov function } V = x^T P x : \]

\[(A + BK)^T P + P(A + BK) = -I \]

Quantized control law: \[u = Kq(x) = K(x + e) \]

Closed-loop: \[\dot{x} = (A + BK)x + BK e \]

(automatically ISS w.r.t. \(e \))

\[\dot{V} < 0 \text{ if } |x| > 2\|PBK\|\|e\| \]

\[2\|PBK\| \Delta \]
DYNAMIC QUANTIZATION
DYNAMIC QUANTIZATION

\[q(x/\mu), \quad \mu \text{ – zooming variable} \]

Hybrid quantized control: \(\mu \) is discrete state
DYNAMIC QUANTIZATION

\(q(x/\mu) \), \(\mu \) – zooming variable

Hybrid quantized control: \(\mu \) is discrete state
DYNAMIC QUANTIZATION

\[q(x/\mu), \quad \mu \text{ – zooming variable} \]

Hybrid quantized control: \(\mu \) is discrete state

Zoom out to overcome saturation
DYNAMIC QUANTIZATION

\[q(x/\mu), \quad \mu \text{ – zooming variable} \]

Hybrid quantized control: \(\mu \) is discrete state

After ultimate bound is achieved,
recompute partition for smaller region

Can recover global asymptotic stability

Proof: ISS from \(x \) to \(\mu \) + ISS from \(\mu \) to \(x \) + small-gain condition

[L–Nešić, ’05, ’06, L–Nešić–Teel ’14]
QUANTIZATION and DELAY

Architecture-independent approach

Delays possibly large

Based on the work of Teel
QUANTIZATION and DELAY

\[\dot{x} = f(x, q(k(x(t - \tau)))) \]
\[= f(x, k(x) + \theta + e) \]

where

\[\theta(t) := k(x(t - \tau)) - k(x(t)) \]
\[e(t) := q(k(x(t - \tau))) - k(x(t - \tau)) \]

Can write

\[\theta(t) = - \int_{t-\tau}^{t} \frac{d}{ds} k(x(s)) \, ds \]

hence

\[|\theta(t)| \leq \tau \gamma \left(\| (x, e) \|_{[t-2\tau, t]} \right) \]
Assuming ISS w.r.t. actuator errors:

\[|x| \geq \rho(|\theta + e|) \Rightarrow \frac{\partial V}{\partial x} f(x, k(x) + \theta + e) < 0 \]

In time domain:

\[|x(t)| \leq \beta(|x_0|, t) + \gamma_\theta \|\theta\|_{[0,t]} + \gamma_e \|e\|_{[0,t]} \]
\[\leq \beta(|x_0|, t) + \gamma_1 (\tau \gamma_2 (\|x\|_{[t-2\tau,t]})) + \gamma_3 (\|e\|_{[t-2\tau,t]}) \]

Small gain: if \[\gamma_1 (\tau \gamma_2 (r)) < r \quad \forall r > 0 \]

then we recover ISS w.r.t. \(e \) \quad [Teel '98]
Need: $\gamma_1(\tau \gamma_2(r)) < r$

$\forall \Lambda > \epsilon > 0 \ \exists \tau^* > 0 :$

small gain true $\forall \tau \leq \tau^*$
Need: $\gamma_1(\tau \gamma_2(r)) < r$

$\forall \Lambda > \varepsilon > 0 \ \exists \tau^* > 0 :$

small gain true $\forall \tau \leq \tau^*$
Need: $\gamma_1(\tau \gamma_2(r)) < r$

$\forall \Lambda > \varepsilon > 0 \; \exists \tau^* > 0$:

small gain true \quad $\forall \tau \leq \tau^*$

$\tau \leq \tau^* \Rightarrow$ solutions starting in R_1 enter R_2 and remain there

Can use “zooming” to improve convergence
EXTERNAL DISTURBANCES [Nešić–L]

State quantization and completely unknown disturbance
EXTERNAL DISTURBANCES

State quantization and completely unknown disturbance
EXTERNAL DISTURBANCES [Nešić–L]

State quantization and completely unknown disturbance

After zoom-in:

Issue: disturbance forces the state outside quantizer range

Must switch repeatedly between zooming-in and zooming-out

Result: for linear plant, can achieve ISS w.r.t. disturbance

(ISS gains are nonlinear although plant is linear; cf. [Martins])
NETWORKED CONTROL SYSTEMS

NCS: Transmit only some variables according to time scheduling protocol
Examples: round-robin, TOD (try-once-discard)

QCS: Transmit quantized versions of all variables

NQCS: Unified framework combining time scheduling and quantization

Basic design/analysis steps:
• Design controller ignoring network effects
• Prove discrete protocol stability via Lyapunov function
• Apply small-gain theorem to compute upper bound on maximal allowed transmission interval (MATI)
ACTIVE PROBING for INFORMATION

Dynamic (time-varying)

Dynamic (changes at sampling times)

very small
Example: \(\dot{x} = f(x, u), \ n = 2, \ N = 9 = 3^n \)

Zoom out to get initial bound
\(\hat{x}(t_0) := 0 \)

Between samplings \(\dot{x} = f(\hat{x}, u) \)
NONLINEAR SYSTEMS

Example: $\dot{x} = f(x, u), \ n = 2, \ N = 9 = 3^n$

Between samplings $\dot{x} = f(\hat{x}, u)$
Let $e := \hat{x} - x$ $\dot{x} = f(x, u)$ \Rightarrow $\dot{e} = f(\hat{x}, u) - f(x, u)$

$\|f(\hat{x}, u) - f(x, u)\|_\infty \leq L\|e\|_\infty$ on a suitable compact region (dependent on x_0)

The norm $\|e\|_\infty$:

- grows at most by the factor $\Lambda := e^{L\tau}$ in one period
- is divided by 3 at the sampling time
NONLINEAR SYSTEMS (continued)

\[e = \hat{x} - x \]

The norm \(||e||_\infty \):

- grows at most by the factor \(\Lambda := e^{\mathcal{L}_\tau} \) in one period
- is divided by 3 at each sampling time

Pick \(\tau \) small enough s.t. \(\Lambda < 3 \Rightarrow e \to 0 \)

\[u(t) = k(\hat{x}(t)) \]

\[\dot{x} = f(x, k(\hat{x})) = f(x, k(x + e)) \]

If this is ISS w.r.t. \(e \) as before, then \(x \to 0 \)
ROBUSTNESS of the CONTROLLER

Option 1. \[\dot{x} = f(x, k(x + e)) \]

ISS w.r.t. \(e \Rightarrow x \rightarrow 0 \)

Same condition as before (restrictive, hard to check)

Option 2. Look at the evolution of \(\hat{x} \)

\[
\begin{cases}
\dot{\hat{x}} = f(\hat{x}, k(\hat{x})) & t \neq \text{sampl. time} \\
\hat{x}(t) = \hat{x}(t^-) + \Delta e(t), & t = \text{sampl. time}
\end{cases}
\]

ISS w.r.t. \(\Delta e \Rightarrow \hat{x} \rightarrow 0 \Rightarrow x \rightarrow 0 \)

\[\exists \text{ checkable sufficient conditions ([Hespanha-L-Teel])}\]
LINEAR SYSTEMS

$$\dot{x} = Ax + Bu$$
\[
\begin{align*}
\dot{x} &= Ax + Bu \\
\hat{x} &= A\hat{x} + Bu
\end{align*}
\]

Between sampling times, \(\Rightarrow \dot{e} = Ae \)

- \(\|e\|_\infty \) grows at most by \(\Lambda := e\|A\|_\infty \tau \) in one period
- divided by 3 at each sampling time

global quantity: \(\Lambda < 3 \Rightarrow e \to 0 \)

amount of static info provided by quantizer

\[
\hat{x} = A\hat{x} + BK\hat{x} = (A + BK)x + BK e \Rightarrow x \to 0
\]

[Baillieul, Brockett-L, Hespanha, Nair-Evans, Petersen-Savkin, Tatikonda]
OTHER RESEARCH DIRECTIONS

- Quantized control of switched systems
- Quantized output feedback and observers (with H. Shim)
- Disturbances and coarse quantizers (with Y. Sharon)
- Modeling uncertainty (with L. Vu)
- Performance-based design (with F. Bullo)
- Multi-agent coordination (with S. LaValle and J. Yu)
- Vision-based control (with Y. Ma and Y. Sharon)